Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302444

RESUMEN

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Asunto(s)
Neuroglía , Neuronas , Animales , Ratones , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Cerebelo/metabolismo , Ácido Glutámico/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Células de Purkinje/metabolismo , Sinapsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(38): e2301003120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695902

RESUMEN

Clustered protocadherin (Pcdh) functions as a cell recognition molecule through the homophilic interaction in the central nervous system. However, its interactions have not yet been visualized in neurons. We previously reported PcdhγB2-Förster resonance energy transfer (FRET) probes to be applicable only to cell lines. Herein, we designed γB2-FRET probes by fusing FRET donor and acceptor fluorescent proteins to a single γB2 molecule and succeeded in visualizing γB2 homophilic interaction in cultured hippocampal neurons. The γB2-FRET probe localized in the soma and neurites, and FRET signals, which were observed at contact sites between neurites, eliminated by ethylene glycol tetraacetic acid (EGTA) addition. Live imaging revealed that the FRET-negative γB2 signals rapidly moved along neurites and soma, whereas the FRET-positive signals remained in place. We observed that the γB2 proteins at synapses rarely interact homophilically. The γB2-FRET probe might allow us to elucidate the function of the homophilic interaction and the cell recognition mechanism.


Asunto(s)
Neuronas , Protocadherinas , Neuritas , Cuerpo Celular , Comunicación Celular
3.
Acta Neuropathol ; 145(2): 235-255, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512060

RESUMEN

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.


Asunto(s)
Miopatías Distales , Proteínas del Choque Térmico HSP40 , Animales , Ratones , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Músculo Esquelético/patología , Chaperonas Moleculares/genética , Debilidad Muscular/patología , Miopatías Distales/patología , Ratones Noqueados
4.
J Gen Physiol ; 154(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36200983

RESUMEN

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.


Asunto(s)
Hipertermia Maligna , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Calcio/metabolismo , Hipertermia Maligna/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutación
5.
iScience ; 25(8): 104800, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992083

RESUMEN

The human vesicular monoamine transporter 1 (VMAT1) harbors unique substitutions (Asn136Thr/Ile) that affect monoamine uptake into synaptic vesicles. These substitutions are absent in all known mammals, suggesting their contributions to distinct aspects of human behavior modulated by monoaminergic transmissions, such as emotion and cognition. To directly test the impact of these human-specific mutations, we introduced the humanized residues into mouse Vmat1 via CRISPR/Cas9-mediated genome editing and examined changes at the behavioral, neurophysiological, and molecular levels. Behavioral tests revealed reduced anxiety-related traits of Vmat1 Ile mice, consistent with human studies, and electrophysiological recordings showed altered oscillatory activity in the amygdala under anxiogenic conditions. Transcriptome analyses further identified changes in gene expressions in the amygdala involved in neurodevelopment and emotional regulation, which may corroborate the observed phenotypes. This knock-in mouse model hence provides compelling evidence that the mutations affecting monoaminergic signaling and amygdala circuits have contributed to the evolution of human socio-emotional behaviors.

6.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35925888

RESUMEN

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Asunto(s)
Hipertermia Maligna , Canal Liberador de Calcio Receptor de Rianodina , Animales , Calcio/metabolismo , Células HEK293 , Calor , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patología , Proteínas de la Membrana , Ratones , Músculo Esquelético/metabolismo , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
7.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35082173

RESUMEN

The neuropeptide oxytocin (Oxt) plays important roles in modulating social behaviors. Oxt receptor (Oxtr) is abundantly expressed in the brain and its relationship to socio-behavioral controls has been extensively studied using mouse brains. Several genetic tools to visualize and/or manipulate Oxtr-expressing cells, such as fluorescent reporters and Cre recombinase drivers, have been generated by ES-cell based gene targeting or bacterial artificial chromosome (BAC) transgenesis. However, these mouse lines displayed some differences in their Oxtr expression profiles probably because of the complex context and integrity of their genomic configurations in each line. Here, we apply our sophisticated genome-editing techniques to the Oxtr locus, systematically generating a series of knock-in mouse lines, in which its endogenous transcriptional regulations are intactly preserved and evaluate their expression profiles to ensure the reliability of our new tools. We employ the epitope tagging strategy, with which C-terminally fused tags can be detected by highly specific antibodies, to successfully visualize the Oxtr protein distribution on the neural membrane with super-resolution imaging for the first time. By using T2A self-cleaving peptide sequences, we also induce proper expressions of tdTomato reporter, codon-improved Cre recombinase (iCre), and spatiotemporally inducible Cre-ERT2 in Oxtr-expressing neurons. Electrophysiological recordings from tdTomato-positive cells in the reporter mice support the validity of our tool design. Retro-orbital injections of AAV-PHP.eB vector into the Cre line further enabled visualization of recombinase activities in the appropriate brain regions. Moreover, the first-time Cre-ERT2 line drives Cre-mediated recombination in a spatiotemporally controlled manner on tamoxifen (TMX) administration. These tools thus provide an excellent resource for future functional studies in Oxt-responsive neurons and should prove of broad interest in the field.


Asunto(s)
Neuronas , Receptores de Oxitocina , Animales , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Reproducibilidad de los Resultados , Conducta Social
8.
Dis Model Mech ; 14(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34850861

RESUMEN

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is caused by generalized depletion of dermatan sulfate (DS) due to biallelic pathogenic variants in CHST14 encoding dermatan 4-O-sulfotransferase 1 (D4ST1) (mcEDS-CHST14). Here, we generated mouse models for mcEDS-CHST14 carrying homozygous mutations (1 bp deletion or 6 bp insertion/10 bp deletion) in Chst14 through CRISPR/Cas9 genome engineering to overcome perinatal lethality in conventional Chst14-deleted knockout mice. DS depletion was detected in the skeletal muscle of these genome-edited mutant mice, consistent with loss of D4ST1 activity. The mutant mice showed common pathophysiological features, regardless of the variant, including growth impairment and skin fragility. Notably, we identified myopathy-related phenotypes. Muscle histopathology showed variation in fiber size and spread of the muscle interstitium. Decorin localized diffusely in the spread endomysium and perimysium of skeletal muscle, unlike in wild-type mice. The mutant mice showed lower grip strength and decreased exercise capacity compared to wild type, and morphometric evaluation demonstrated thoracic kyphosis in mutant mice. The established CRISPR/Cas9-engineered Chst14 mutant mice could be a useful model to further our understanding of mcEDS pathophysiology and aid in the development of novel treatment strategies.


Asunto(s)
Síndrome de Ehlers-Danlos , Animales , Sistemas CRISPR-Cas/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Femenino , Genómica , Ratones , Ratones Noqueados , Embarazo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
9.
Front Cell Dev Biol ; 9: 695021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708033

RESUMEN

Carbohydrate sulfotransferase 14 (CHST14) encodes dermatan 4-O-sulfotransferase 1, a critical enzyme for dermatan sulfate (DS) biosynthesis. Musculocontractural Ehlers-Danlos syndrome (mcEDS) is associated with biallelic pathogenic variants of CHST14 and is characterized by malformations and manifestations related to progressive connective tissue fragility. We identified myopathy phenotypes in Chst14-deficient mice using an mcEDS model. Decorin is a proteoglycan harboring a single glycosaminoglycan chain containing mainly DS, which are replaced with chondroitin sulfate (CS) in mcEDS patients with CHST14 deficiency. We studied the function of decorin in the skeletal muscle of Chst14-deficient mice because decorin is important for collagen-fibril assembly and has a myokine role in promoting muscle growth. Although decorin was present in the muscle perimysium of wild-type (Chst14+/+ ) mice, decorin was distributed in the muscle perimysium as well as in the endomysium of Chst14-/- mice. Chst14-/- mice had small muscle fibers within the spread interstitium; however, histopathological findings indicated milder myopathy in Chst14-/- mice. Myostatin, a negative regulator of protein synthesis in the muscle, was upregulated in Chst14-/- mice. In the muscle of Chst14-/- mice, decorin was downregulated compared to that in Chst14+/+ mice. Chst14-/- mice showed altered cytokine/chemokine balance and increased fibrosis, suggesting low myogenic activity in DS-deficient muscle. Therefore, DS deficiency in mcEDS causes pathological localization and functional abnormalities of decorin, which causes disturbances in skeletal muscle myogenesis.

10.
Nat Commun ; 12(1): 4293, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257294

RESUMEN

Mutations in the type 1 ryanodine receptor (RyR1), a Ca2+ release channel in skeletal muscle, hyperactivate the channel to cause malignant hyperthermia (MH) and are implicated in severe heat stroke. Dantrolene, the only approved drug for MH, has the disadvantages of having very poor water solubility and long plasma half-life. We show here that an oxolinic acid-derivative RyR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (Compound 1, Cpd1), effectively prevents and treats MH and heat stroke in several mouse models relevant to MH. Cpd1 reduces resting intracellular Ca2+, inhibits halothane- and isoflurane-induced Ca2+ release, suppresses caffeine-induced contracture in skeletal muscle, reduces sarcolemmal cation influx, and prevents or reverses the fulminant MH crisis induced by isoflurane anesthesia and rescues animals from heat stroke caused by environmental heat stress. Notably, Cpd1 has great advantages of better water solubility and rapid clearance in vivo over dantrolene. Cpd1 has the potential to be a promising candidate for effective treatment of patients carrying RyR1 mutations.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Calcio/metabolismo , Hipertermia Maligna/tratamiento farmacológico , Hipertermia Maligna/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Halotano/farmacología , Isoflurano/farmacología , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mutación/genética
11.
Cells ; 10(5)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946570

RESUMEN

Fluorescent reporter mouse lines and Cre/Flp recombinase driver lines play essential roles in investigating various molecular functions in vivo. Now that applications of the CRISPR/Cas9 genome-editing system to mouse fertilized eggs have drastically accelerated these knock-in mouse generations, the next need is to establish easier, quicker, and cheaper methods for knock-in donor preparation. Here, we reverify and optimize the phospho-PCR method to obtain highly pure long single-stranded DNAs (ssDNAs) suitable for knock-in mouse generation via genome editing. The sophisticated sequential use of two exonucleases, in which double-stranded DNAs (dsDNAs) amplified by a pair of 5'-phosphorylated primer and normal primer are digested by Lambda exonuclease to yield ssDNA and the following Exonuclease III treatment degrades the remaining dsDNAs, enables much easier long ssDNA productions without laborious gel extraction steps. By microinjecting these donor DNAs along with CRISPR/Cas9 components into mouse zygotes, we have effectively generated fluorescent reporter lines and recombinase drivers. To further broaden the applicability, we have prepared long ssDNA donors in higher concentrations and electroporated them into mouse eggs to successfully obtain knock-in embryos. This classical yet improved method, which is regaining attention on the progress of CRISPR/Cas9 development, shall be the first choice for long donor DNA preparation, and the resulting knock-in lines could accelerate life science research.


Asunto(s)
ADN de Cadena Simple/normas , Técnicas de Sustitución del Gen/métodos , Animales , Sistemas CRISPR-Cas , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Electroporación/métodos , Edición Génica/métodos , Ratones , Ratones Transgénicos , Microinyecciones/métodos , Reacción en Cadena de la Polimerasa/métodos , Cigoto/metabolismo
12.
BMC Med ; 18(1): 343, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208172

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscular disorder and cognitive dysfunction caused by mutations in the dystrophin gene. It is characterized by excess inflammatory responses in the muscle and repeated degeneration and regeneration cycles. Neutral sphingomyelinase 2/sphingomyelin phosphodiesterase 3 (nSMase2/Smpd3) hydrolyzes sphingomyelin in lipid rafts. This protein thus modulates inflammatory responses, cell survival or apoptosis pathways, and the secretion of extracellular vesicles in a Ca2+-dependent manner. However, its roles in dystrophic pathology have not yet been clarified. METHODS: To investigate the effects of the loss of nSMase2/Smpd3 on dystrophic muscles and its role in the abnormal behavior observed in DMD patients, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double knockout [DKO] mice). RESULTS: Young mdx:Smpd3 DKO mice exhibited reduced muscular degeneration and decreased inflammation responses, but later on they showed exacerbated muscular necrosis. In addition, the abnormal stress response displayed by mdx mice was improved in the mdx:Smpd3 DKO mice, with the recovery of brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. CONCLUSIONS: nSMase2/Smpd3-modulated lipid raft integrity is a potential therapeutic target for DMD.


Asunto(s)
Distrofia Muscular de Duchenne/genética , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados
13.
Commun Biol ; 3(1): 574, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060832

RESUMEN

Individual cell shape and integrity must precisely be orchestrated during morphogenesis. Here, we determine function of type II cadherins, Cdh6, Cdh8, and Cdh11, whose expression combinatorially demarcates the mouse neural plate/tube. While CRISPR/Cas9-based single type II cadherin mutants show no obvious phenotype, Cdh6/8 double knockout (DKO) mice develop intermingled forebrain/midbrain compartments as these two cadherins' expression opposes at the nascent boundary. Cdh6/8/11 triple, Cdh6/8 or Cdh8/11 DKO mice further cause exencephaly just within the cranial region where mutated cadherins' expression merges. In the Cdh8/11 DKO midbrain, we observe less-constricted apical actin meshwork, ventrally-directed spreading, and occasional hyperproliferation among dorsal neuroepithelial cells as origins for exencephaly. These results provide rigid evidence that, by conferring distinct adhesive codes to each cell, redundant type II cadherins serve essential and shared roles in compartmentalization and neurulation, both of which proceed under the robust control of the number, positioning, constriction, and fluidity of neuroepithelial cells.


Asunto(s)
Cadherinas/genética , Cadherinas/metabolismo , Células Neuroepiteliales/metabolismo , Animales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Mapeo Cromosómico , Desarrollo Embrionario/genética , Técnica del Anticuerpo Fluorescente , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genómica/métodos , Humanos , Inmunohistoquímica , Ratones , Placa Neural/embriología , Placa Neural/metabolismo , Tubo Neural/embriología , Tubo Neural/metabolismo
14.
Sci Adv ; 6(36)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917586

RESUMEN

For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP-based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.


Asunto(s)
Moléculas de Adhesión Celular , Neuronas , Cadherinas/genética , Moléculas de Adhesión Celular/metabolismo , Mesencéfalo , Neurogénesis , Neuronas/fisiología
15.
Sci Rep ; 10(1): 10110, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572084

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal X-linked disorder caused by nonsense or frameshift mutations in the DMD gene. Among various treatments available for DMD, antisense oligonucleotides (ASOs) mediated exon skipping is a promising therapeutic approach. For successful treatments, however, it is requisite to rigorously optimise oligonucleotide chemistries as well as chemical modifications of ASOs. To achieve this, here, we aim to develop a novel enhanced green fluorescence protein (EGFP)-based reporter assay system that allows us to perform efficient and high-throughput screenings for ASOs. We design a new expression vector with a CAG promoter to detect the EGFP fluorescence only when skipping of mdx-type exon 23 is induced by ASOs. Then, an accurate screening was successfully conducted in C57BL/6 primary myotubes using phosphorodiamidate morpholino oligomer or locked nucleic acids (LNA)/2'-OMe mixmers with different extent of LNA inclusion. We accordingly generated a novel transgenic mouse model with this EGFP expression vector (EGFP-mdx23 Tg). Finally, we confirmed that the EGFP-mdx23 Tg provided a highly sensitive platform to check the effectiveness as well as the biodistribution of ASOs for exon skipping therapy. Thus, the assay system provides a simple yet highly sensitive platform to optimise oligonucleotide chemistries as well as chemical modifications of ASOs.


Asunto(s)
Exones/genética , Terapia Genética/métodos , Empalme del ARN/fisiología , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Exones/fisiología , Femenino , Genes Reporteros/genética , Proteínas Fluorescentes Verdes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinos/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/genética , Oligonucleótidos Antisentido/metabolismo , Cultivo Primario de Células , Empalme del ARN/genética
16.
Neurosci Res ; 132: 1-7, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29391173

RESUMEN

Pax6 encodes a transcription factor that plays pivotal roles in eye development, early brain patterning, neocortical arealization, and so forth. Visualization of Pax6 expression dynamics in these events could offer numerous advantages to neurodevelopmental studies. While CRISPR/Cas9 system has dramatically accelerated one-step generation of knock-out mouse, establishment of gene-cassette knock-in mouse via zygote injection has been considered insufficient due to its low efficiency. Recently, an improved CRISPR/Cas9 system for effective gene-cassette knock-in has been reported, where the native form of guide RNAs (crRNA and tracrRNA) assembled with recombinant Cas9 protein are directly delivered into mouse fertilized eggs. Here we apply this strategy to insert IRES-EGFP-pA cassette into Pax6 locus and achieve efficient targeted insertions of the 1.8 kb reporter gene. In Pax6-IRES-EGFP mouse we have generated, EGFP-positive cells reside in the eyes and cerebellum as endogenous Pax6 expressing cells at postnatal day 2. At the early embryonic stages when the embryos are transparent, EGFP-positive regions can be easily identified without PCR-based genotyping, precisely recapitulating the endogenous Pax6 expression patterns. Remarkably, at E12.5, the graded expression patterns of Pax6 in the developing neocortex now become recognizable in our knock-in mice, serving a sufficiently sensitive and useful tool to precisely visualize neurodevelopmental processes.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Sustitución del Gen , Genes erbB-1/genética , Factor de Transcripción PAX6/genética , Animales , Genes Reporteros/genética , Ratones Noqueados , ARN Guía de Kinetoplastida/genética
17.
J Neurosci ; 38(5): 1277-1294, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29317485

RESUMEN

Cerebellar granule cell precursors (GCPs) and granule cells (GCs) represent good models to study neuronal development. Here, we report that the transcription factor myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse GC development. We found that Meis1 is expressed in GC lineage cells and astrocytes in the cerebellum during development. Targeted disruption of the Meis1 gene specifically in the GC lineage resulted in smaller cerebella with disorganized lobules. Knock-down/knock-out (KO) experiments for Meis1 and in vitro assays showed that Meis1 binds to an upstream sequence of Pax6 to enhance its transcription in GCPs/GCs and also suggested that the Meis1-Pax6 cascade regulates morphology of GCPs/GCs during development. In the conditional KO (cKO) cerebella, many Atoh1-positive GCPs were observed ectopically in the inner external granule layer (EGL) and a similar phenomenon was observed in cultured cerebellar slices treated with a bone morphogenic protein (BMP) inhibitor. Furthermore, expression of Smad proteins and Smad phosphorylation were severely reduced in the cKO cerebella and Meis1-knock-down GCPs cerebella. Reduction of phosphorylated Smad was also observed in cerebellar slices electroporated with a Pax6 knock-down vector. Because it is known that BMP signaling induces Atoh1 degradation in GCPs, these findings suggest that the Meis1-Pax6 pathway increases the expression of Smad proteins to upregulate BMP signaling, leading to degradation of Atoh1 in the inner EGL, which contributes to differentiation from GCPs to GCs. Therefore, this work reveals crucial functions of Meis1 in GC development and gives insights into the general understanding of the molecular machinery underlying neural differentiation from neural progenitors.SIGNIFICANCE STATEMENT We report that myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse granule cell (GC) development. Here, we show Meis1 is expressed in GC precursors (GCPs) and GCs during development. Our knock-down and conditional knock-out (cKO) experiments and in vitro assays revealed that Meis1 is required for proper cerebellar structure formation and for Pax6 transcription in GCPs and GCs. The Meis1-Pax6 cascade regulates the morphology of GCs. In the cKO cerebella, Smad proteins and bone morphogenic protein (BMP) signaling are severely reduced and Atoh1-expressing GCPs are ectopically detected in the inner external granule layer. These findings suggest that Meis1 regulates degradation of Atoh1 via BMP signaling, contributing to GC differentiation in the inner EGL, and should provide understanding into GC development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas Morfogenéticas Óseas/biosíntesis , Proteínas Morfogenéticas Óseas/genética , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/fisiología , Factor de Transcripción PAX6/biosíntesis , Factor de Transcripción PAX6/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Astrocitos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Gránulos Citoplasmáticos , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Fosforilación , Embarazo , Proteínas Smad/metabolismo
19.
Sci Rep ; 6: 31227, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27503586

RESUMEN

Due to the vast clinical and genetic heterogeneity, identification of causal genetic determinants for autism spectrum disorder (ASD) has proven to be complex. Whereas several dozen 'rare' genetic variants for ASD susceptibility have been identified, studies are still underpowered to analyse 'common' variants for their subtle effects. A recent application of genome-wide association studies (GWAS) to ASD indicated significant associations with the single nucleotide polymorphisms (SNPs) on chromosome 5p14.1, located in a non-coding region between cadherin10 (CDH10) and cadherin9 (CDH9). Here we apply an in vivo bacterial artificial chromosome (BAC) based enhancer-trapping strategy in mice to scan the gene desert for spatiotemporal cis-regulatory activities. Our results show that the ASD-associated interval harbors the cortical area, striatum, and cerebellum specific enhancers for a long non-coding RNA, moesin pseudogene1 antisense (MSNP1AS) during the brain developing stages. Mouse moesin protein levels are not affected by exogenously expressed human antisense RNAs in our transgenic brains, demonstrating the difficulty in modeling rather smaller effects of common variants. Our first in vivo evidence for the spatiotemporal transcription of MSNP1AS however provides a further support to connect this intergenic variant with the ASD susceptibility.


Asunto(s)
Trastorno Autístico/genética , Encéfalo/metabolismo , Cromosomas Humanos Par 5 , Proteínas de Microfilamentos/genética , Animales , Trastorno Autístico/metabolismo , Encéfalo/fisiología , Cadherinas/genética , Cromosomas Artificiales Bacterianos , Biología Computacional , Técnicas Genéticas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Ratones , Ratones Transgénicos , Oligonucleótidos Antisentido/genética , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
20.
Mech Dev ; 140: 25-40, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26940020

RESUMEN

Development of oligodendrocytes, myelin-forming glia in the central nervous system (CNS), proceeds on a protracted schedule. Specification of oligodendrocyte progenitor cells (OPCs) begins early in development, whereas their terminal differentiation occurs at late embryonic and postnatal periods. However, for oligodendrocytes in the cerebellum, the developmental origins and the molecular machinery to control these distinct steps remain unclear. By in vivo fate mapping and immunohistochemical analyses, we obtained evidence that the majority of oligodendrocytes in the cerebellum originate from the Olig2-expressing neuroepithelial domain in the ventral rhombomere 1 (r1), while about 6% of cerebellar oligodendrocytes are produced in the cerebellar ventricular zone. Furthermore, to elucidate the molecular determinants that regulate their development, we analyzed mice in which the transcription factor Sox9 was specifically ablated from the cerebellum, ventral r1 and caudal midbrain by means of the Cre/loxP recombination system. This resulted in a delay in the birth of OPCs and subsequent developmental aberrations in these cells in the Sox9-deficient mice. In addition, we observed altered proliferation of OPCs, resulting in a decrease in oligodendrocyte numbers that accompanied an attenuation of the differentiation and an increased rate of apoptosis. Results from in vitro assays using oligodendrocyte-enriched cultures further supported our observations from in vivo experiments. These data suggest that Sox9 participates in the development of oligodendrocytes in the cerebellum, by regulating the timing of their generation, proliferation, differentiation and survival.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/fisiología , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Factor de Transcripción SOX9/metabolismo , Animales , Apoptosis/fisiología , Recuento de Células/métodos , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesencéfalo/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuroglía/fisiología , Células Precursoras de Oligodendrocitos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA