Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Langmuir ; 40(17): 9170-9179, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644569

RESUMEN

Molybdenum carbide MXenes have garnered considerable attention in electronics, energy storage, and catalysis. However, they are prone to oxidative degradation, but the associated mechanisms have not been systematically explored. Therefore, the oxidation mechanisms of Mo-based single-metallic/bimetallic carbide MXenes including Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx in aqueous suspensions were investigated for the first time in this study. Similar to Ti3C2Tx MXene, Mo-based MXenes were found to undergo oxidative degradation in their aqueous dispersions, leading to the disruption of their crystal structure and subsequent loss of optical and electronic properties. Notably, the Mo2CTx MXene deviated from this typical oxidation behavior as it produced an amorphous product with Mo ions instead of highly crystalline Mo-oxides during oxidation. Similarly, the Mo2TiC2Tx and Mo2Ti2C3Tx MXenes did not yield crystalline Mo-oxides; instead, they produced highly crystalline anatase TiO2 and a Mo-ion-containing amorphous product simultaneously. Furthermore, high-temperature annealing of the oxidized Mo2CTx MXene powder at 800 °C transformed the amorphous Mo-containing product into highly crystalline MoO2 crystals. These findings highlight the unconventional oxidation behavior of Mo-based MXenes, which suggests that the formation of crystalline Mo-based oxides requires a higher activation energy during oxidation than that of TiO2. The unique oxidative pathway reported herein can help elucidate the oxidation mechanisms of Mo-based MXene dispersions and their products. The insights from this study can pave the way for fundamental studies in academia as well as broaden the applications of Mo-based MXenes in various industries.

2.
Adv Mater ; 36(19): e2311411, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38288859

RESUMEN

Heterointerface engineering, which plays a pivotal role in developing advanced microwave-absorbing materials, is employed to design zeolitic imidazolate framework (ZIF)-MXene nanocomposites. The ZIF-MXene composites are prepared by electrostatic self-assembly of negatively charged titanium carbide MXene flakes and positively charged Co-containing ZIF nanomaterials. This approach effectively creates abundant Mott-Schottky heterointerfaces exhibiting a robust built-in electric field (BIEF) effect, as evidenced by experimental and theoretical analyses, leading to a notable attenuation of electromagnetic energy. Systematic manipulation of the BIEF-exhibiting heterointerface, achieved through topological modulation of the ZIF, proficiently alters charge separation, facilitates electron migration, and ultimately enhances polarization relaxation loss, resulting in exceptional electromagnetic wave absorption performance (reflection loss RLmin = -47.35 dB and effective absorption bandwidth fE = 6.32 GHz). The present study demonstrates an innovative model system for elucidating the interfacial polarization mechanisms and pioneers a novel approach to developing functional materials with electromagnetic characteristics through spatial charge engineering.

3.
J Appl Genet ; 64(4): 667-678, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37749479

RESUMEN

Wheat powdery mildew possesses a significant threat to wheat crops not only on a global scale but also in the northern region of Pakistan. Recognizing the need for effective measures, the exploration and utilization of exotic germplasm take on critical importance. To address this, a series of trials were made to investigate the response of 30 European (EU) lines, in addition to the local checks (Siran, Atta-Habib (AH) and Ghanimat-e-IBGE) against wheat powdery mildew at the Himalayan region of Pakistan. The study involved field testing from 2018 to 2022 across multiple locations, resulting in 38 different environments (location × year). In addition to field evaluations, molecular genotyping was also performed. The disease was absent on the tested lines during 2018, 2019, and 2020 whereas it ranged from 0 to 100% at Chitral location during 2021, where 100% was observed only for one EU wheat line "Matrix." The disease prevailed only at Gilgit location (0-60% for EU wheat line "F236") and at Nagar location (0-10% for EU wheat lines Substance and Nelson) during the disease season of 2022. Most of the EU wheat lines showed very low ACI values, due to an overall low disease pressure. Matrix showed the maximum ACI (1.54) followed by Ritter (1.25) and Bli_autrichion (0.87), whereas the minimum (0.1) was for Substance, JB_Asano, and KWS_Loft followed by Canon (0.19), all exhibiting partial resistance. The molecular marker-based screening revealed that Pm38 was the most prevalent and detected in 100% of wheat lines followed by Pm39 (60%) and Pm8 (30%). Six wheat lines (20%) possessed all three Pm genes (Pm8, Pm38, and Pm39) concurrently. The variability observed in this study can be utilized in future breeding efforts aimed at developing resistant wheat varieties.


Asunto(s)
Ascomicetos , Triticum , Triticum/genética , Resistencia a la Enfermedad/genética , Pakistán , Fitomejoramiento , Enfermedades de las Plantas/genética
4.
J Parasit Dis ; 47(3): 664-670, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37520195

RESUMEN

Pentavalent antimonials continue to be the standard treatment for cutaneous leishmaniasis. But their use is retarded owing to highly-priced, prolonged hospitalization, noxious and poor solubility. Therefore, there is a dire need to characterize new potential compounds possessing anti-leishmanial activity. Topical therapies that are more successful are an essential alternative therapeutic option for the localized self-limiting form of this disease. We tested the herbal-based topical cream Lesh Nat B against Leishmania tropica KWH23 promastigotes and axenic amastigotes in vitro. The anti-leishmanial activity of Lesh Nat B cream was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay against promastigotes and axenic amastigotes. The results of Lesh Nat B cream were concentration and incubation time-dependent. After 72 h of incubation, Lesh Nat B cream efficiently suppresses the promastigote form of the parasite, followed by 48 h and 24 h. At 72 h, the lowest and highest levels of activity were 37% and 90%. Amastigotes had a minimum activity of 34% and a maximum activity of 78.5%, respectively. This formulation was more cytotoxic against promastigote form than amastigotes form at 72 h incubation periods. All the experiments were carried out in triplicates. Half-maximal inhibitory concentration (IC50) values were determined to be (66 ug/ml) and (70 ug/ml) against promastigote and amastigote forms, respectively. Moreover, 1.63% hemolytic activity was observed in Lesh Nat B cream at (10 µg/ml) while 3% hemolytic activity was observed at (37 µg/ml). It can be concluded that Lesh Nat B cream demonstrated effective Leishmanicidal and less hemolytic activity and can be used as an alternative therapeutic option for the treatment of cutaneous leishmaniasis; however, more studies are expected to justify its effectiveness in treating cutaneous leishmaniasis in both humans and animals.

5.
J Food Sci Technol ; 60(7): 2031-2041, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37415847

RESUMEN

This study aimed to prepare a stirred type of fat-free yogurt from enzymatically hydrolyzed potato powder (EHPP) and skimmed milk powder (SMP) without changing its quality and consumer acceptance. The yogurt formulations prepared contained different amount of EHPP 0, 10, 25 and 50% and were stored for 28 days at 4 °C and observed that with increasing substitution ratio, acid production was increased while the viability of lactic acid bacteria was decreased after 28 days of storage at 4 °C. The antioxidant activities (2-Diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging activity and ferric reducing antioxidant power (FRAP) of the yogurt were increased with increasing EHPP over the storage period. The yogurt formulations having 25 to 50% EHPP has the highest DPPH free radical scavenging activity and FRAP values. Water holding capacity (WHC) was decreased over the storage period with 25% EHPP. The hardness, adhesiveness and gumminess were decreased while no significant change was found in springiness with EHPP addition over the storage period. The rheological analysis showed an elastic behavior of yogurt gels with EHPP supplementation. The sensory results of yogurt containing 25% EHPP have the highest values of taste and acceptance. Yogurt in combination with EHPP and SMP has the higher levels of WHC than non-supplemented yogurt and better stability was recorded during storage. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05737-9.

6.
Food Chem ; 427: 136586, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37399645

RESUMEN

Fresh-cut Chinese water chestnut (CWC) was treated with high pressure CO2 (HPCD) to inhibit the browning reactions, and the underlying mechanism was investigated in this study. Results showed that HPCD at 2 MPa pressure significantly inhibited lipoxygenase activity and enhanced superoxide dismutase activity, leading to decreased malondialdehyde and H2O2 contents in surface tissue. Moreover, HPCD could reduce total phenols/flavonoids content of surface tissue. Compare with control, homoeriodictyol, hesperetin, and isorhamnetin contents of 2 MPa HPCD-treated samples on day 10 were reduced by 95.72%, 94.31%, and 94.02%, respectively. Furthermore, HPCD treatment enhanced antioxidant enzyme activities, and improved the O2- scavenging ability and reducing power of inner tissue. In conclusion, by regulating ROS and membrane lipid metabolism, HPCD treatment with appropriate pressure could retard the biosynthesis of flavonoids and enzymatic oxidation of phenolic compounds in surface tissue, and enhance antioxidant activity of inner tissue, thereby, delaying the quality deterioration of fresh-cut CWC.


Asunto(s)
Eleocharis , Especies Reactivas de Oxígeno/metabolismo , Eleocharis/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo de los Lípidos , Peróxido de Hidrógeno/metabolismo , Antioxidantes/farmacología , Fenoles/metabolismo , Flavonoides/metabolismo
7.
Small Methods ; 7(8): e2201715, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36855195

RESUMEN

MXenes are an emerging class of 2D materials with unique properties including metallic conductivity, mechanical flexibility, and surface tunability, which ensure their utility for diverse applications. However, the synthesis of MXenes with high crystallinity and atomic stoichiometry in a low-cost process is still challenging because of the difficulty in controlling the oxygen substitute in the precursors and final products of MXenes, which limits their academic understanding and practical applications. Here, a novel cost-effective method is reported to synthesize a highly crystalline and stoichiometric Ti3 C2 Tx MXene with minimum substitutional oxygen impurities by controlling the amount of excess carbon and time of high-energy milling in carbothermal reduction of recycled TiO2 source. The highest used content (2 wt%) of excess-carbon yields TiC with the highest carbon content and minimal oxygen substitutes, which leads to the Ti3 AlC2 MAX phase with improved crystallinity and atomic stoichiometry, and finally Ti3 C2 Tx MXene with the highest electrical conductivity (11738 S cm-1 ) and superior electromagnetic shielding effectiveness. Additionally, the effects of carbon content and substitutional oxygen on the physical properties of TiC and Ti3 AlC2 are elucidated by density-functional-theory calculations. This inexpensive TiO2 -based method of synthesizing high-quality Ti3 C2 Tx MXene can facilitate large-scale production and thus accelerate global research on MXenes.

8.
Fungal Genet Biol ; 164: 103753, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574524

RESUMEN

The wheat yellow rust pathogen has been shown to be diverse and potentially originated in the Himalayan region. Although Himalayan populations of Pakistan, Nepal and Bhutan have been previously compared, little is known about the relative divergence and diversity in Puccinia striiformis populations in the bordering regions of Pakistan and China. To assess the relative diversity and divergence in these regions of Pakistan (Gilgit-Baltistan, Hazara and Azad Jammu Kashmir) and China (Xinjiang, Qinghai, Tibet, Sichuan, Guizhou and Yunnan), a total of 1245 samples were genotyped using 17 microsatellite SSR markers. A clear divergence was observed between the bordering regions of Pakistan and China (FST = 0.28) without any resampling of genetic groups and multilocus genotypes across two sides of the Himalayan mountains. The closest subpopulations across the two countries were Xinjiang and Gilgit-Baltistan (Nei's distance = 0.147), which were close geographically. A very high diversity and recombinant population structure was observed in both populations, though slightly higher in China (Genotypic diversity = 0.970; r¯d = 0.000) than in Pakistan (Genotypic diversity = 0.902; r¯d = 0.065). The distribution of genetic groups and resampling of MLGs revealed more gene flow across Yunnan, Guizhou and Sichuan regions in China, while between Hazara and Azad-Jammu Kashmir in Pakistan. The lack of gene flow between Pakistan and China populations is due to geographical barriers and a large patch of land without wheat. The information on the relative diversity and divergence in different geographical zones of the pathogen center of diversity and neighboring region should be considered in resistant wheat deployment while considering the invasion potential of the pathogen at regional and global contexts.


Asunto(s)
Basidiomycota , Flujo Génico , China , Triticum/genética , Pakistán , Enfermedades de las Plantas/genética , Basidiomycota/genética
9.
Insects ; 13(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36354861

RESUMEN

The research was focused on the ability of wheat aphids Sitobion avenae, harboring bacterial secondary symbionts (BSS) Hamiltonella defensa or Regiella insecticola, to withstand exposure to fungal isolates of Beauveria bassiana and Metarhizium brunneum. In comparison to aphids lacking bacterial secondary symbionts, BSS considerably increased the lifespan of wheat aphids exposed to B. bassiana strains (Bb1022, EABb04/01-Tip) and M. brunneum strains (ART 2825 and BIPESCO 5) and also reduced the aphids' mortality. The wheat aphid clones lacking bacterial secondary symbionts were shown to be particularly vulnerable to M. brunneum strain BIPESCO 5. As opposed to wheat aphids carrying bacterial symbionts, fungal pathogens infected the wheat aphids lacking H. defensa and R. insecticola more quickly. When treated with fungal pathogens, bacterial endosymbionts had a favorable effect on the fecundity of their host aphids compared to the aphids lacking these symbionts, but there was no change in fungal sporulation on the deceased aphids. By defending their insect hosts against natural enemies, BSS increase the population of their host society and may have a significant impact on the development of their hosts.

10.
Adv Sci (Weinh) ; 9(35): e2204151, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253151

RESUMEN

Texture regulation of metal-organic frameworks (MOFs) is essential for controlling their electromagnetic wave (EMW) absorption properties. This review systematically summarizes the recent advancements in texture regulation strategies for MOFs, including etching and exchange of central ions, etching and exchange of ligands, chemically induced self-assembly, and MOF-on-MOF heterostructure design. Additionally, the EMW absorption mechanisms in approaches based on structure-function dependencies, including nano-micro topological engineering, defect engineering, interface engineering, and hybrid engineering, are comprehensively explored. Finally, current challenges and future research orientation are proposed. This review aims to provide new perspectives for designing MOF-derived EMW-absorption materials to achieve essential breakthroughs in mechanistic investigations in this promising field.


Asunto(s)
Estructuras Metalorgánicas , Microondas , Ingeniería
11.
Environ Sci Pollut Res Int ; 29(59): 88763-88778, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35838938

RESUMEN

Scarcity in mining and geo-political direction diverts attention toward critical metal recycling. Gallium (Ga), indium (In) and germanium (Ge) are among the critical metals that consume approximately 80% of world mining in the innovative production of electrical and electronic equipment. The fast obsolescing rate generates a large amount of electronic waste, which is now seen as a secondary reservoir for critical metals. These metal resources need to be dealt with with effective recycling capabilities. Based on solid-phase extraction, magnetic nano-hydrometallurgy is opening a new area of metallic contents recovery in conventional hydrometallurgy. In the present work, polyacrylonitrile (PAN) based electrospun nanofibres were synthesized and carbonized at 800 °C in an inert environment. After surface oxidation, carbon nanofibres were decorated with magnetite particles through co-precipitation. The saturation magnetization value (Ms = 23.6 emu/g) confirms high loading of magnetite particles. The selected critical metal ions are freely present in an aqueous solution at pH 1 to 3; thus, highest removal efficiency was observed at pH 2. Pseudo-second-order kinetics confirm the chemical/charge interaction between sorbent and sorbate ions. Maximum sorption capacity calculated through Langmuir isotherm was 226, 191 and 171 mg/g for Ge(IV), Ga(III) and In(III) metal ions, respectively. The RL value (0 < RL < 1) indicates favourable sorption process. The sorbed target metal ions were collectively eluted using 1 mol/L hydrochloric acid. The preconcentration factor was calculated at 1080 for Ge(IV) and In(III) while 1260 for Ga(III). The method was validated with 5 µg/mL spiked multi-element standards and applied to multiple acid-leached electronic waste samples like PCBs, waste LCD panels and solar panels. Recoveries in the range of 96.2% for Ga(III), 95.6% for In(III) and 97.4% for Ge(IV) in the presence of diverse ions indicate the suitability of the proposed method for target metal ions even in a complex matrix.


Asunto(s)
Residuos Electrónicos , Galio , Nanofibras , Residuos Electrónicos/análisis , Óxido Ferrosoférrico , Carbono , Indio , Iones , Concentración de Iones de Hidrógeno , Adsorción
12.
Food Chem X ; 14: 100307, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35492256

RESUMEN

The potential mechanism behind the browning inhibition in fresh-cut water chestnuts (FWC) after eugenol (EUG) treatment was investigated by comparing the difference in browning behavior between surface and inner tissues. EUG treatment was found to inactivate browning-related enzymes and reduce phenolic contents in surface tissue. Molecular docking further confirmed the hydrophobic interactions and hydrogen bonding between EUG and phenylalanine ammonia-lyase (PAL). Moreover, EUG also enhanced reactive oxygen species (ROS)-scavenging enzyme activities, ultimately decreasing the O2 - generation rates. Regarding inner tissue, EUG induced the accumulation of colorless phenolic compounds and increased the antioxidant capacity. In conclusion, 1.5 % EUG exhibited the best inhibitory effect on FWC browning, which partly attribute to the direct inhibitory effects on PAL activity. Furthermore, EUG could also enhance the enzymatic/non-enzymatic antioxidant capacity and alleviate the ROS damage to membranes, thereby, preventing the contact between oxidative enzymes and phenols and indirectly inhibiting the enzymatic browning in FWC.

13.
Nutr Res ; 102: 23-34, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366456

RESUMEN

Peppers are a rich source of bioactive compounds with several health benefits. However, most of the knowledge about these benefits has been obtained through in vitro studies, and less is known about their in vivo health-promoting and stress resistance effects. Therefore, we hypothesized that the intake of apigenin glycosides (XAp-G) from Xiaomila green pepper (Capsicum frutescens) could protect against stress factors and promote longevity of Caenorhabditis elegans. Synchronized worms were treated with XAp-G and the lifespan and stress resistance were examined. XAp-G treatment strongly enhanced the average lifespan of worms by 23.9% compared with control by reducing the reactive oxygen species (ROS) level. Ultrahigh performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectometry analysis showed that Xiaomila pepper (polyamide fraction) contained significant amount of flavone glycosides with m/z 563.14 (apigenin glycosides). Green fluorescent protein fluorescence and real-time polymerase chain reaction analyses showed that XAp-G-treatment could regulate the expression of anti-aging related genes, including daf-2, daf-16, sod-3, hsp-16.2, skn-1, gst-4, gcs-1, jnk-1, and sir-2.1 in C elegans, thereby promoting the translocation of DAF-16 and SKN-1 into the nucleus. However, it could not extend the lifespan of daf-16, skn-1, and sir-2.1 knocked-down mutants. XAp-G treatment significantly reduced ROS under normal and stress conditions (juglone, hydrogen peroxide), and thereby promotes longevity of C elegans via the insulin/insulin-like growth factor-1 signaling pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans , Capsicum , Animales , Apigenina/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glicósidos/farmacología , Longevidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
14.
Plant Foods Hum Nutr ; 77(1): 30-36, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35119578

RESUMEN

In this study, capsaicin-glucoside and dihydro-capsaicin-glucoside derived from fresh hot-red pepper were isolated and identified using UPLC-ESI-Q-TOF-MS/PDA. Synchronized worms were treated with capsaicinoid-glucosides (CG), and then lifespan and stress resistance were examined. The 50 µg/ml concentration of CG-intake could effectively protect the Caenorhabditis elegans (C. elegans) against stresses factors including oxidation and heat as well as reactive oxygen species (ROS), thereby enhancing the survival of CG-treated worms under stress. Enhancing stress resistance in CG-treated worms could be due to the increased expressions of stress-related genes in C. elegans such as daf-16, skn-1 and their downstream target genes (sod-3, hsp-16.2, gst-4 and gcs-1). Lifespan study of different C. elegans strains and RT-PCR showed that the CG-mediated lifespan extension was dependent on DAF-16/FOXO and SKN-1/Nrf2 transcription factors. The study is a step forward in exploring the stress resistance and anti-aging properties of this beneficial extract. Thus, this study will be useful in formulating remedies for stresses factors and age associated disorders.


Asunto(s)
Proteínas de Caenorhabditis elegans , Capsicum , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Capsaicina/farmacología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glucósidos , Longevidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
15.
Antioxidants (Basel) ; 10(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34829680

RESUMEN

In the present study, the browning degree and reducing power of browning products of catechin (CT), epicatechin (EC), caffeic acid (CA), and chlorogenic acid (CGA) in autoxidation and enzymatic oxidation were investigated. Influencing factors were considered, such as pH, substrate species and composition, and eugenol. Results show that polyphenols' autoxidation was intensified in an alkaline environment, but the reducing power was not improved. Products of enzymatic oxidation at a neutral pH have higher reducing power than autoxidation. In enzymatic oxidation, the browning degree of mixed substrates was higher than that of a single polyphenol. The reducing power of flavonoid mixed solution (CT and EC) was higher than those of phenolic acids' (CA and CGA) in autoxidation and enzymatic oxidation. Eugenol activity studies have shown that eugenol could increase autoxidation browning but inhibit enzymatic browning. Activity test and molecular docking results show that eugenol could inhibit tyrosinase.

16.
ACS Appl Mater Interfaces ; 13(13): 15827-15836, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33779141

RESUMEN

Two-dimensional graphene is of great interest for electromagnetic interference (EMI) shielding owing to its inherent electrical conductivity, lightweight, and excellent mechanical flexibility even at minor thicknesses. However, the complex synthesis and quality-control difficulties limit its application. In this study, we demonstrate that electrochemically exfoliated graphene (EEG) with post-reduction treatment is a promising candidate for lightweight EMI shielding materials. A facile electrochemical exfoliation approach produces a high-quality multilayer graphene with a high electrical conductivity of ∼600 S cm-1, owing to its low degree of oxidation. The reduction of EEG by three different methods, including chemical, thermal, and microwave treatments, causes the removal of surface functional groups as well as significant changes in the microstructure of the final films. The reduced graphene films by microwaves, which are driven by the improved electrical conductivity and large volume expansion, exhibit an EMI shielding effectiveness of 108 dB at a thickness of 125 µm, one of the largest EMI shielding values ever reported for graphene at comparable thicknesses.

17.
Nano Converg ; 8(1): 9, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33723803

RESUMEN

Understanding and preventing oxidative degradation of MXene suspensions is essential for fostering fundamental academic studies and facilitating widespread industrial applications. Owing to their outstanding electrical, electrochemical, optoelectronic, and mechanical properties, MXenes, an emerging class of two-dimensional (2D) nanomaterials, show promising state-of-the-art performances in various applications including electromagnetic interference (EMI) shielding, terahertz shielding, electrochemical energy storage, triboelectric nanogenerators, thermal heaters, light-emitting diodes (LEDs), optoelectronics, and sensors. However, MXene synthesis using harsh chemical etching causes many defects or vacancies on the surface of the synthesized MXene flakes. Defective sites are vulnerable to oxidative degradation reactions with water and/or oxygen, which deteriorate the intrinsic properties of MXenes. In this review, we demonstrate the nature of oxidative degradation of MXenes and highlight the recent advancements in controlling the oxidation kinetics of MXenes with several promising strategic approaches, including careful control of the quality of the parent MAX phase, chemical etching conditions, defect passivation, dispersion medium, storage conditions, and polymer composites.

18.
Adv Mater ; 32(51): e2002159, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33146936

RESUMEN

Since their discovery in 2011, 2D transition metal carbides, nitrides, and carbonitrides, known as MXenes, have attracted considerable global research interest owing to their outstanding electrical conductivity coupled with light weight, flexibility, transparency, surface chemistry tunability, and easy solution processability. Here, the promising abilities of 2D MXenes, from both experimental and theoretical perspectives, for designing conductive materials for a range of applications, including electromagnetic interference shielding, flexible optoelectronics, sensors, and thermal heaters, are presented.

19.
Saudi J Biol Sci ; 27(10): 2622-2631, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32994720

RESUMEN

Oat (Avena sativa L.) is an important fodder crop of Pakistan, though with low productivity. The present study was conducted to evaluate the performance and genetic diversity of exotic oat germplasm, with emphasis on cereal yellow dwarf virus resistance. A total of 16 exotic line (introduced from Aarhus University Denmark) and 1 local line (provided by The University of Agriculture Peshawar), were grown during the season 2017-18 in Completely Randomized Block Design with three replications across two locations of Khyber Pakhtunkhwa i.e., Peshawar and Kohat. Field testing enabled to collect the data on BYDV incidence, BYDV severity, aphid infestation, plant height, leaf area, panicle length, panicle weight, spikelets per panicle, 1000 grain weight (g), grain yield (g), biological yield (g) and harvest index (%). Prevalence of BYDV was variable across location and over time. Six weeks data showed high disease pressure at Peshawar (85%), with SA-O-01 genotype having AUDPC value of 95%. Almost all the varieties showed less tolerance towards the Aphids attack. Line SA-O-15 showed the maximum 1000 grain weight (42.6 g) at Kohat, while SA-O-4 showed the maximum 1000 grain weight (60.7 g) at Peshawar. Line SA-O-05 (3634 g per (0.9 m2) plot) gave the maximum biological yield at Kohat station, while Line SA-O-01 gave the maximum biological yield (2517 g) at Peshawar. Mean grain yield for Kohat was recorded 0.155 g per (0.9 m2) plot while for Peshawar it was 0.231 g per (0.9 m2) plot. At Kohat line SA-O-10 produced the maximum grain yield (0.229 g), while line SA-O-12 produced the maximum grain yield at Peshawar (0.288 g). Molecular genotyping with a set of 4 RAPD primers revealed substantial diversity among17 oat lines. A total of 23 loci were amplified showing a high level of variations and polymorphism among the proposed lines. The maximum number of loci was recorded for GLA-04 (8), while the minimum number of loci was recorded for GLD-18 (4). Among the tested RAPD primers the maximum gene diversity (0.529) was recorded for loci GLA-03B230, GLA-04B130, GLA-04B300, GLB-05B150 and GLA-18B100 while the minimum (0.118) genetic diversity was recorded for loci GLA-03B600, GLB-05B330 and GLA-18B500. A clear divergence was found between most of the exotic oat lines. The observed genetic diversity in exotic oat germplasm and its resistance towards Barley Yellow Dwarf virus could be useful for oat genetic improvement and broadening the genetic background of cultivated oat germplasm.

20.
Food Sci Anim Resour ; 40(5): 689-698, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32968722

RESUMEN

The aim of study was to scrutinize the physicochemical and protein profile of milk obtained from local Pakistani breeds of milch animals such as Nilli-Ravi buffalo, Sahiwal cow, Kajli sheep, Beetal goat and Brela camel. Physicochemical analysis unveiled maximum number of total solids and protein found in sheep and minimum in camel. Buffalo milk contains the highest level of fat (7.45%) while camel milk contains minimum (1.94%). Ash was found maximum in buffalo (0.81%) and sheep (0.80%) while minimum in cow's milk (0.71%). Casein and whey proteins were separated by subjecting milk to isoelectric pH and then analyzed through sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed heterogeneity among these species. Different fractions including αS1, αS2, κ-casein, ß-casein and ß-lactoglobulen (ß-Lg) were identified and quantitatively compared in all milk samples. Additionally, this electrophoretic method after examining the number and strength of different protein bands (αS1, αS2, ß-CN, α-LAC, BSA, and ß-Lg, etc.), was helpful to understand the properties of milk for different processing purposes and could be successfully applied in dairy industry. Results revealed that camel milk was best suitable for producing allergen free milk protein products. Furthermore, based on the variability of milk proteins, it is suggested to clarify the phylogenetic relationships between different cattle breeds and to gather the necessary data to preserve the genetic fund and biodiversity of the local breeds. Thus, the study of milk protein from different breed and species has a wide range of scope in producing diverse protein based dairy products like cheese.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA