Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Commun ; 15(1): 7653, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227600

RESUMEN

In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA ( >10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.


Asunto(s)
ADN Mitocondrial , Inestabilidad Genómica , Retroelementos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Retroelementos/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Reparación del ADN por Unión de Extremidades , Roturas del ADN de Doble Cadena , Meiosis/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética
2.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496432

RESUMEN

Formation of templated insertions at DNA double-strand breaks (DSBs) is very common in cancer cells. The mechanisms and enzymes regulating these events are largely unknown. Here, we investigated templated insertions in yeast at DSBs using amplicon sequencing across a repaired locus. We document very short (most ∼5-34 bp), templated inverted duplications at DSBs. They are generated through a foldback mechanism that utilizes microhomologies adjacent to the DSB. Enzymatic requirements suggest a hybrid mechanism wherein one end requires Polδ-mediated synthesis while the other end is captured by nonhomologous end joining (NHEJ). This process is exacerbated in mutants with low levels or mutated RPA ( rtt105 Δ; rfa1 -t33) or extensive resection mutant ( sgs1 Δ exo1 Δ). Templated insertions from various distant genomic locations also increase in these mutants as well as in rad27 Δ and originate from fragile regions of the genome. Among complex insertions, common events are insertions of two sequences, originating from the same locus and with inverted orientation. We propose that these inversions are also formed by microhomology-mediated template switching. Taken together, we propose that a shortage of RPA typical in cancer cells is one possible factor stimulating the formation of templated insertions.

3.
Res Sq ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260641

RESUMEN

In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease 1. Cytoplasmic nucleases degrade these DNA species to limit inflammation 2,3. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nuclear mtDNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.

4.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168242

RESUMEN

In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease. Cytoplasmic nucleases degrade these DNA species to limit inflammation. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nu clear mt DNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (∼45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.

5.
Methods Enzymol ; 672: 339-368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35934483

RESUMEN

Break-Induced Replication (BIR) is a homologous recombination (HR) pathway that differentiates itself from all other HR pathways by involving extensive DNA synthesis of up to hundreds of kilobases. This DNA synthesis occurs in G2/M arrested cells by a mechanism distinct from regular DNA replication. BIR initiates by strand invasion of a single end of a DNA double-strand break (DSB) followed by extensive D-loop migration. The main replicative helicase Mcm2-7 is dispensable for BIR, however, Pif1 helicase and its PCNA interaction domain are required. Pif1 helicase was shown to be important for extensive repair-specific DNA synthesis at DSB in budding and fission yeasts, flies, and human cells, implicating conservation of the mechanism. Additionally, Mph1 helicase negatively regulates BIR by unwinding migrating D-loops, and Srs2 promotes BIR by eliminating the toxic joint molecules. Here, we describe the methods that address the following questions in studying BIR: (i) how to distinguish enzymes needed specifically for BIR from enzymes needed for other HR mechanisms that require short patch DNA synthesis, (ii) what are the phenotypes expected for mutants deficient in extensive synthesis during BIR, (iii) how to follow extensive DNA synthesis during BIR? Methods are described using yeast model organism and wild-type cells are compared side-by-side with Pif1 deficient cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 13(1): 359, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042867

RESUMEN

Single-stranded DNA (ssDNA) commonly occurs as intermediates in DNA metabolic pathways. The ssDNA binding protein, RPA, not only protects the integrity of ssDNA, but also directs the downstream factor that signals or repairs the ssDNA intermediate. However, it remains unclear how these enzymes/factors outcompete RPA to access ssDNA. Using the budding yeast Saccharomyces cerevisiae as a model system, we find that Dna2 - a key nuclease in DNA replication and repair - employs a bimodal interface to act with RPA both in cis and in trans. The cis-activity makes RPA a processive unit for Dna2-catalyzed ssDNA digestion, where RPA delivers its bound ssDNA to Dna2. On the other hand, activity in trans is mediated by an acidic patch on Dna2, which enables it to function with a sub-optimal amount of RPA, or to overcome DNA secondary structures. The trans-activity mode is not required for cell viability, but is necessary for effective double strand break (DSB) repair.


Asunto(s)
ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálisis , Supervivencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Reparación del ADN , Modelos Biológicos , Mutación/genética , Péptidos/metabolismo , Fleomicinas/farmacología , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Tirosina/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34140406

RESUMEN

Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or break-induced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de Unión al ARN/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Conversión Génica , Eliminación de Gen , Duplicación de Gen , Humanos , Modelos Biológicos , Unión Proteica , Recombinasa Rad51/metabolismo
8.
EMBO J ; 40(10): e104847, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33844333

RESUMEN

DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.


Asunto(s)
Reparación del ADN/fisiología , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Humanos
9.
Nature ; 590(7847): 655-659, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473214

RESUMEN

Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases1,2. Previous studies have defined the enzymes that are required for BIR1-5; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Saccharomyces cerevisiae , Cromosomas Fúngicos/genética , ADN Helicasas/deficiencia , ADN Primasa/metabolismo , ADN de Hongos/biosíntesis , ADN Polimerasa Dirigida por ADN/deficiencia , Inestabilidad Genómica , Cinética , Mutagénesis , Mutación , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Telómero/genética , Factores de Tiempo , Transcripción Genética
10.
Methods Mol Biol ; 2153: 47-57, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840771

RESUMEN

DNA double-strand break (DSB) end resection is an essential step for homologous recombination. It generates 3' single-stranded DNA needed for the loading of the strand exchange proteins and DNA damage checkpoint proteins. To study the mechanism of end resection in fission yeast, we apply a robust, quantitative and inducible assay. Resection is followed at a single per genome DSB synchronously generated by the tet-inducible I-PpoI endonuclease. An additional assay to follow resection involves recombination between two direct repeats by single-strand annealing (SSA), since SSA requires extensive resection to expose two single-strand repeats for annealing. The kinetics of resection and SSA repair are then measured using Southern blots.


Asunto(s)
ADN de Cadena Simple/metabolismo , Reparación del ADN por Recombinación , Schizosaccharomyces/genética , Southern Blotting , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Endodesoxirribonucleasas/metabolismo
11.
PLoS Genet ; 16(10): e1008689, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057349

RESUMEN

The Rad51/RecA family of recombinases perform a critical function in typical repair of double-strand breaks (DSBs): strand invasion of a resected DSB end into a homologous double-stranded DNA (dsDNA) template sequence to initiate repair. However, repair of a DSB using single stranded DNA (ssDNA) as a template, a common method of CRISPR/Cas9-mediated gene editing, is Rad51-independent. We have analyzed the genetic requirements for these Rad51-independent events in Saccharomyces cerevisiae by creating a DSB with the site-specific HO endonuclease and repairing the DSB with 80-nt single-stranded oligonucleotides (ssODNs), and confirmed these results by Cas9-mediated DSBs in combination with a bacterial retron system that produces ssDNA templates in vivo. We show that single strand template repair (SSTR), is dependent on Rad52, Rad59, Srs2 and the Mre11-Rad50-Xrs2 (MRX) complex, but unlike other Rad51-independent recombination events, independent of Rdh54. We show that Rad59 acts to alleviate the inhibition of Rad51 on Rad52's strand annealing activity both in SSTR and in single strand annealing (SSA). Gene editing is Rad51-dependent when double-stranded oligonucleotides of the same size and sequence are introduced as templates. The assimilation of mismatches during gene editing is dependent on the activity of Msh2, which acts very differently on the 3' side of the ssODN which can anneal directly to the resected DSB end compared to the 5' end. In addition DNA polymerase Polδ's 3' to 5' proofreading activity frequently excises a mismatch very close to the 3' end of the template. We further report that SSTR is accompanied by as much as a 600-fold increase in mutations in regions adjacent to the sequences directly undergoing repair. These DNA polymerase ζ-dependent mutations may compromise the accuracy of gene editing.


Asunto(s)
Sistemas CRISPR-Cas/genética , Reparación del ADN/genética , ADN de Cadena Simple/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Endonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Oligonucleótidos/genética , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Rec A Recombinasas/genética , Saccharomyces cerevisiae/genética , ADN Polimerasa theta
12.
Mol Cell ; 76(5): 699-711.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31542296

RESUMEN

Rad52 is a key factor for homologous recombination (HR) in yeast. Rad52 helps assemble Rad51-ssDNA nucleoprotein filaments that catalyze DNA strand exchange, and it mediates single-strand DNA annealing. We find that Rad52 has an even earlier function in HR in restricting DNA double-stranded break ends resection that generates 3' single-stranded DNA (ssDNA) tails. In fission yeast, Exo1 is the primary resection nuclease, with the helicase Rqh1 playing a minor role. We demonstrate that the choice of two extensive resection pathways is regulated by Rad52. In rad52 cells, the resection rate increases from ∼3-5 kb/h up to ∼10-20 kb/h in an Rqh1-dependent manner, while Exo1 becomes dispensable. Budding yeast Rad52 similarly inhibits Sgs1-dependent resection. Single-molecule analysis with purified budding yeast proteins shows that Rad52 competes with Sgs1 for DNA end binding and inhibits Sgs1 translocation along DNA. These results identify a role for Rad52 in limiting ssDNA generated by end resection.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Cinética , Mutación , Dominios Proteicos , Transporte de Proteínas , Proteína Recombinante y Reparadora de ADN Rad52/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
13.
Cell ; 176(6): 1310-1324.e10, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827684

RESUMEN

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.


Asunto(s)
Cromosomas Humanos Par 17 , Mutación , Anomalías Múltiples/genética , Puntos de Rotura del Cromosoma , Trastornos de los Cromosomas/genética , Duplicación Cromosómica/genética , Variaciones en el Número de Copia de ADN , Reparación del ADN/genética , Replicación del ADN , Reordenamiento Génico , Genoma Humano , Variación Estructural del Genoma , Humanos , Mutación INDEL , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Recombinación Genética , Análisis de Secuencia de ADN/métodos , Síndrome de Smith-Magenis/genética
14.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30652105

RESUMEN

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

15.
Nature ; 564(7735): 287-290, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518856

RESUMEN

Insertions of mobile elements1-4, mitochondrial DNA5 and fragments of nuclear chromosomes6 at DNA double-strand breaks (DSBs) threaten genome integrity and are common in cancer7-9. Insertions of chromosome fragments at V(D)J recombination loci can stimulate antibody diversification10. The origin of insertions of chromosomal fragments and the mechanisms that prevent such insertions remain unknown. Here we reveal a yeast mutant, lacking evolutionarily conserved Dna2 nuclease, that shows frequent insertions of sequences between approximately 0.1 and 1.5 kb in length into DSBs, with many insertions involving multiple joined DNA fragments. Sequencing of around 500 DNA inserts reveals that they originate from Ty retrotransposons (8%), ribosomal DNA (rDNA) (15%) and from throughout the genome, with preference for fragile regions such as origins of replication, R-loops, centromeres, telomeres or replication fork barriers. Inserted fragments are not lost from their original loci and therefore represent duplications. These duplications depend on nonhomologous end-joining (NHEJ) and Pol4. We propose a model in which alternative processing of DNA structures arising in Dna2-deficient cells can result in the release of DNA fragments and their capture at DSBs. Similar DNA insertions at DSBs are expected to occur in any cells with linear extrachromosomal DNA fragments.


Asunto(s)
Rotura Cromosómica , Duplicación Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , ADN Helicasas/deficiencia , Mutagénesis Insercional/genética , Saccharomyces cerevisiae/genética , Centrómero/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa beta/metabolismo , Replicación del ADN/genética , ADN Ribosómico/genética , Origen de Réplica/genética , Retroelementos/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética
16.
Nucleic Acids Res ; 46(21): 11326-11339, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30304473

RESUMEN

Repair of DNA double-strand breaks (DSBs) requires eviction of the histones around DNA breaks to allow the loading of numerous repair and checkpoint proteins. However, the mechanism and regulation of this process remain poorly understood. Here, we show that histone H2B ubiquitination (uH2B) promotes histone eviction at DSBs independent of resection or ATP-dependent chromatin remodelers. Cells lacking uH2B or its E3 ubiquitin ligase Bre1 exhibit hyper-resection due to the loss of H3K79 methylation that recruits Rad9, a known negative regulator of resection. Unexpectedly, despite excessive single-strand DNA being produced, bre1Δ cells show defective RPA and Rad51 recruitment and impaired repair by homologous recombination and response to DNA damage. The HR defect in bre1Δ cells correlates with impaired histone loss at DSBs and can be largely rescued by depletion of CAF-1, a histone chaperone depositing histones H3-H4. Overexpression of Rad51 stimulates histone eviction and partially suppresses the recombination defects of bre1Δ mutant. Thus, we propose that Bre1 mediated-uH2B promotes DSB repair through facilitating histone eviction and subsequent loading of repair proteins.


Asunto(s)
Daño del ADN , Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitinación , Adenosina Trifosfato/química , Cromatina/química , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Cadena Simple/química , Recombinación Homóloga , Microscopía Fluorescente , Mutación , Recombinación Genética , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN
17.
Genome Res ; 28(8): 1228-1242, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29907612

RESUMEN

Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.


Asunto(s)
Elementos Alu/genética , Variaciones en el Número de Copia de ADN/genética , Inestabilidad Genómica/genética , Duplicación de Gen/genética , Genoma Humano/genética , Humanos , Eliminación de Secuencia
18.
Cell Rep ; 21(7): 1707-1714, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141206

RESUMEN

The S. cerevisiae Pif1 helicase functions with DNA polymerase (Pol) δ in DNA synthesis during break-induced replication (BIR), a conserved pathway responsible for replication fork repair and telomere recombination. Pif1 interacts with the DNA polymerase processivity clamp PCNA, but the functional significance of the Pif1-PCNA complex remains to be elucidated. Here, we solve the crystal structure of PCNA in complex with a non-canonical PCNA-interacting motif in Pif1. The structure guides the construction of a Pif1 mutant that is deficient in PCNA interaction. This mutation impairs the ability of Pif1 to enhance DNA strand displacement synthesis by Pol δ in vitro and also the efficiency of BIR in cells. These results provide insights into the role of the Pif1-PCNA-Pol Î´ ensemble during DNA break repair by homologous recombination.


Asunto(s)
ADN Helicasas/química , ADN Polimerasa III/química , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/química , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , ADN Polimerasa III/metabolismo , Reparación del ADN , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Nat Commun ; 8(1): 1790, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29176630

RESUMEN

Break-induced replication (BIR) is a DNA double-strand break repair pathway that leads to genomic instabilities similar to those observed in cancer. BIR proceeds by a migrating bubble where asynchrony between leading and lagging strand synthesis leads to accumulation of long single-stranded DNA (ssDNA). It remains unknown how this ssDNA is prevented from unscheduled pairing with the template, which can lead to genomic instability. Here, we propose that uncontrolled Rad51 binding to this ssDNA promotes formation of toxic joint molecules that are counteracted by Srs2. First, Srs2 dislodges Rad51 from ssDNA preventing promiscuous strand invasions. Second, it dismantles toxic intermediates that have already formed. Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules. Overall, we uncover a new feature of BIR and propose that tight control of ssDNA accumulated during this process is essential to prevent its channeling into toxic structures threatening cell viability.


Asunto(s)
ADN Helicasas/fisiología , Reparación del ADN/genética , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Supervivencia Celular/genética , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Unión Proteica/fisiología , Recombinasa Rad51/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Nat Commun ; 8(1): 860, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038425

RESUMEN

The breast cancer susceptibility proteins BRCA1 and BRCA2 have emerged as key stabilizing factors for the maintenance of replication fork integrity following replication stress. In their absence, stalled replication forks are extensively degraded by the MRE11 nuclease, leading to chemotherapeutic sensitivity. Here we report that BRCA proteins prevent nucleolytic degradation by protecting replication forks that have undergone fork reversal upon drug treatment. The unprotected regressed arms of reversed forks are the entry point for MRE11 in BRCA-deficient cells. The CtIP protein initiates MRE11-dependent degradation, which is extended by the EXO1 nuclease. Next, we show that the initial limited resection of the regressed arms establishes the substrate for MUS81 in BRCA2-deficient cells. In turn, MUS81 cleavage of regressed forks with a ssDNA tail promotes POLD3-dependent fork rescue. We propose that targeting this pathway may represent a new strategy to modulate BRCA2-deficient cancer cell response to chemotherapeutics that cause fork degradation.BRCA proteins have emerged as key stabilizing factors for the maintenance of replication forks following replication stress. Here the authors describe how reversed replication forks are degraded in the absence of BRCA2, and a MUS81 and POLD3-dependent mechanism of rescue following the withdrawal of genotoxic agent.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas Portadoras/metabolismo , ADN Polimerasa III/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Endodesoxirribonucleasas , Recombinación Homóloga , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA