Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 155: 106561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678748

RESUMEN

Condylar stress fracture of the distal end of the third metacarpal/metatarsal (MC3/MT3) bones is a major cause of Thoroughbred racehorse injury and euthanasia worldwide. Functional adaptation to exercise and fatigue damage lead to structural changes in the subchondral bone that include increased modeling (resulting in sclerotic bone tissue) and targeted remodeling repair (resulting in focal resorption spaces in the parasagittal groove). Whether these focal structural changes, as detectable by standing computed tomography (sCT), lead to elevated strain at the common site of condylar stress fracture has not been demonstrated. Therefore, the goal of the present study was to compare full-field three-dimensional (3D) strain on the distopalmar aspect of MC3 bone specimens with and without focal subchondral bone injury (SBI). Thirteen forelimb specimens were collected from racing Thoroughbreds for mechanical testing ex vivo and underwent sCT. Subsequently, full-field displacement and strain at the joint surface were determined using stereo digital image correlation. Strain concentration was observed in the parasagittal groove (PSG) of the loaded condyles, and those with SBI in the PSG showed higher strain rates in this region than control bones. PSG strain rate in condyles with PSG SBI was more sensitive to CT density distribution in comparison with condyles with no sCT-detectable injury. Findings from this study help to interpret structural changes in the subchondral bone due to fatigue damage and to assess risk of incipient stress fracture in a patient-specific manner.


Asunto(s)
Huesos del Metacarpo , Estrés Mecánico , Animales , Caballos , Huesos del Metacarpo/diagnóstico por imagen , Fenómenos Biomecánicos , Pruebas Mecánicas , Tomografía Computarizada por Rayos X , Fracturas por Estrés/diagnóstico por imagen , Fracturas por Estrés/patología
2.
Biomech Model Mechanobiol ; 22(1): 85-104, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36329356

RESUMEN

Fluid flow in (porous) bone plays an important role in its maintenance, adaptation, and healing after an injury. Experimental and computational studies apply mechanical loading on bone to predict fluid flow development and/or to find its material properties. In most cases, mechanical loading is applied as a linear function in time. Multiple loading functions-with identical peak load and loading frequency-were used to investigate load-induced fluid flow and predict bone healing surrounding a dental implant. Implementing an instantaneous healing stimulus led to major differences in healing predictions for slightly different loading functions. Load-induced fluid flow was found to be displacement-rate dependent with complex spatial-temporal variations and not necessarily symmetrical during loading and unloading phases. Haversine loading resulted in more numerical stability compared to ramped/triangular loading, providing the opportunity for further investigation of the effects of various physiological masticatory loadings. It was concluded that using the average healing stimulus during cyclic loading gives the most robust bone healing predictions.


Asunto(s)
Implantes Dentales , Huesos , Cicatrización de Heridas/fisiología , Adaptación Fisiológica , Soporte de Peso/fisiología
3.
Sci Rep ; 10(1): 4335, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152332

RESUMEN

Long-term bone healing/adaptation after a dental implant treatment starts with diffusion of mesenchymal stem cells to the wounded region and their subsequent differentiation. The healing phase is followed by the bone-remodeling phase. In this work, a mechano-regulatory cellular differentiation model was used to simulate tissue healing around an immediately loaded dental implant. All tissue types were modeled as poroelastic in the healing phase. Material properties of the healing region were updated after each loading cycle for 30 cycles (days). The tissue distribution in the healed state was then used as the initial condition for the remodeling phase during which regions healed into bone adapt their apparent density with respect to a homeostatic remodeling stimulus. The short- (bone healing) and long-term (bone remodeling) effects of initial implant micromotion during the healing phase were studied. Development of soft tissue was observed both in the coronal region due to high fluid velocity, and on the vertical sides of the healing-gap due to high shear stress. In cases with small implant micromotion, tissue between the implant threads differentiated into bone during the healing phase but resorbed during remodeling. In cases with large implant micromotion, higher percentage of the healing region differentiated into soft tissue resulting in smaller volume of bone tissue available for remodeling. However, the remaining bone region developed higher density bone tissue. It was concluded that an optimal range of initial implant micromotion could be designed for a specific patient in order to achieve the desired long-term functional properties.


Asunto(s)
Remodelación Ósea , Implantes Dentales , Cicatrización de Heridas , Algoritmos , Módulo de Elasticidad , Humanos , Modelos Teóricos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA