Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Brain ; 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39454566

RESUMEN

Encephalitis with antibodies to leucine-rich glioma-inactivated 1 (LGI1-Ab-E) is a common form of autoimmune encephalitis, presenting with seizures and neuropsychiatric changes, predominantly in older males. More than 90% of patients carry the human leucocyte antigen (HLA) class II allele, HLA-DRB1*07:01. However, this is also present in 25% of healthy controls. Therefore, we hypothesised the presence of additional genetic predispositions. In this genome-wide association study and meta-analysis, we studied a discovery cohort of 131 French LGI1-Ab-E and a validation cohort of 126 American, British and Irish LGI1-Ab-E patients, ancestry-matched to 2613 and 2538 European controls, respectively. Outside the known major HLA signal, we found two single nucleotide polymorphisms (SNPs) at genome-wide significance (p < 5 x 10-8), implicating PTPRD, a protein tyrosine phosphatase, and LINC00670, a non-protein coding RNA gene. Meta-analysis defined four additional non-HLA loci, including the protein coding COBL gene. Polygenic risk scores with and without HLA variants proposed a contribution of non-HLA loci. In silico network analyses suggested LGI1 and PTPRD mediated interactions via the established receptors of LGI1, ADAM22 and ADAM23. Our results identify new genetic loci in LGI1-Ab-E. These findings present opportunities for mechanistic studies and offer potential markers of susceptibility, prognostics and therapeutic responses.

2.
Brain ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39432679

RESUMEN

In animal models, brain neurodegeneration biomarkers drain into cervical lymph nodes (CLNs), and this drainage function is reduced with ageing. If this occurred in humans, CLNs may provide a readily accessible measure of this aspect of protein clearance. We tested this hypothesis in people using ultrasound-guided fine needle aspiration (FNA). We measured amyloid-beta 40 and 42, phospho-Tau-181, glial-fibrillary-acidic-protein, and neurofilament-light using single molecule array in CLN aspirates and plasma from: i) a discovery cohort of 25 autoimmune patients, and from ii) plasma, CLNs and capillary blood in four healthy volunteers, an optimisation cohort. FNA was well-tolerated by all participants. In both cohorts, all biomarkers were detected in all plasma and CLN samples, other than neurofilament-light (8/17 of discovery cohort). CLN biomarker concentrations were significantly greater than plasma concentrations for all except neurofilament-light, most markedly for phospho-Tau-181 (266-fold; P<0.02), whose CLN concentrations decreased with age (Spearman r=-0.66, P=0.001). This study presents the first evidence that neurodegenerative biomarkers are detectable in human CLNs. Raised CLN:plasma biomarker ratios suggest their concentration in CLNs may offer a distinct compartment for minimally-invasive measurement of brain clearance and lymphatic drainage, with potential applicability to study of ageing and future clinical trials.

3.
Ann Clin Transl Neurol ; 11(10): 2792-2798, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222408

RESUMEN

This post hoc analysis of the randomized, placebo-controlled N-MOmentum study (NCT02200770) of inebilizumab in neuromyelitis optica spectrum disorder (NMOSD) evaluated relationships between circulating B-cell subsets and aquaporin-4 immunoglobulin G (AQP4-lgG) titers and attacks. Among participants receiving placebo, CD20+ and CD27+ B-cell counts were modestly increased from the pre-attack visit to attack; plasmablast/plasma cell gene signature was increased from baseline to the pre-attack visit (p = 0.016) and from baseline to attack (p = 0.009). With inebilizumab treatment, B-cell subset counts decreased and did not increase with attacks. No difference in change of AQP4-IgG titers from baseline to time of attack was observed.


Asunto(s)
Acuaporina 4 , Autoanticuerpos , Linfocitos B , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/tratamiento farmacológico , Neuromielitis Óptica/sangre , Acuaporina 4/inmunología , Adulto , Femenino , Persona de Mediana Edad , Masculino , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Inmunoglobulina G/sangre , Subgrupos de Linfocitos B/inmunología
4.
Immunity ; 57(10): 2328-2343.e8, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39217987

RESUMEN

The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.


Asunto(s)
Encéfalo , Vasos Linfáticos , Meninges , Esclerosis Múltiple , Vaina de Mielina , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Ratones , Meninges/inmunología , Encéfalo/metabolismo , Encéfalo/inmunología , Humanos , Vaina de Mielina/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Ratones Endogámicos C57BL , Supervivencia Celular , Remielinización , Femenino , Masculino , Inmunidad Adaptativa
5.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200284, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39141878

RESUMEN

BACKGROUND AND OBJECTIVES: Autoantibodies against the protein leucine-rich glioma inactivated 1 (LGI1) cause the most common subtype of autoimmune encephalitis with predominant involvement of the limbic system, associated with seizures and memory deficits. LGI1 and its receptor ADAM22 are part of a transsynaptic protein complex that includes several proteins involved in presynaptic neurotransmitter release and postsynaptic glutamate sensing. Autoantibodies against LGI1 increase excitatory synaptic strength, but studies that genetically disrupt the LGI1-ADAM22 complex report a reduction in postsynaptic glutamate receptor-mediated responses. Thus, the mechanisms underlying the increased synaptic strength induced by LGI1 autoantibodies remain elusive, and the contributions of presynaptic molecules to the LGI1-transsynaptic complex remain unclear. We therefore investigated the presynaptic mechanisms that mediate autoantibody-induced synaptic strengthening. METHODS: We studied the effects of patient-derived purified polyclonal LGI1 autoantibodies on synaptic structure and function by combining direct patch-clamp recordings from presynaptic boutons and somata of hippocampal neurons with super-resolution light and electron microscopy of hippocampal cultures and brain slices. We also identified the protein domain mediating the presynaptic effect using domain-specific patient-derived monoclonal antibodies. RESULTS: LGI1 autoantibodies dose-dependently increased short-term depression during high-frequency transmission, consistent with increased release probability. The increased neurotransmission was not related to presynaptic calcium channels because presynaptic Cav2.1 channel density, calcium current amplitude, and calcium channel gating were unaffected by LGI1 autoantibodies. By contrast, application of LGI1 autoantibodies homogeneously reduced Kv1.1 and Kv1.2 channel density on the surface of presynaptic boutons. Direct presynaptic patch-clamp recordings revealed that LGI1 autoantibodies cause a pronounced broadening of the presynaptic action potential. Domain-specific effects of LGI1 autoantibodies were analyzed at the neuronal soma. Somatic action potential broadening was induced by polyclonal LGI1 autoantibodies and patient-derived monoclonal autoantibodies targeting the epitempin domain, but not the leucin-rich repeat domain. DISCUSSION: Our results indicate that LGI1 autoantibodies reduce the density of both Kv1.1 and Kv1.2 on presynaptic boutons, without actions on calcium channel density or function, thereby broadening the presynaptic action potential and increasing neurotransmitter release. This study provides a molecular explanation for the neuronal hyperactivity observed in patients with LGI1 autoantibodies.


Asunto(s)
Potenciales de Acción , Autoanticuerpos , Péptidos y Proteínas de Señalización Intracelular , Terminales Presinápticos , Transmisión Sináptica , Autoanticuerpos/inmunología , Autoanticuerpos/farmacología , Humanos , Animales , Transmisión Sináptica/fisiología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Terminales Presinápticos/metabolismo , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Canal de Potasio Kv.1.1/inmunología , Proteínas/inmunología , Proteínas/metabolismo , Masculino , Células Cultivadas
6.
Handb Clin Neurol ; 203: 211-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39174250

RESUMEN

Stiff Person syndrome (SPS) is a rare autoimmune disorder of the central nervous system characterized by stiffness and spasms in the lumbar and proximal lower limb muscles. Nonmotor symptoms include phobias, anxiety, and depression. SPS exists on a spectrum ranging from a focal disease known as the stiff limb syndrome to progressive encephalomyelitis with rigidity and myoclonus. Collectively, these conditions may be referred to as stiff person spectrum disorders, as they share similar core clinical features and autoantibodies against several neuronal proteins, which are involved in modulating central hyperexcitability. Antibodies against the glutamic acid decarboxylase enzyme are most frequently associated with SPS but their role in disease pathogenesis remains uncertain. Other antibodies associated with SPS now include those against the glycine receptor, amphiphysin, dipeptidyl-peptidase-like protein 6, gephyrin, γ-aminobutyric acid receptor A (GABAAR), and the GABAAR-associated protein. First-line treatments for SPS include diazepam and baclofen. Patients who do not respond adequately may benefit from immunotherapy. Intravenous immunoglobulin has the most supporting evidence, and while several other immunotherapies are used, further trials are required to determine their efficacy. Further studies to establish the precise role of autoantibodies in the pathogenesis of SPS are also needed to better understand and manage this disabling condition.


Asunto(s)
Síndrome de la Persona Rígida , Síndrome de la Persona Rígida/terapia , Síndrome de la Persona Rígida/diagnóstico , Síndrome de la Persona Rígida/inmunología , Humanos , Autoanticuerpos/inmunología , Glutamato Descarboxilasa/inmunología
7.
Handb Clin Neurol ; 203: 235-269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39174251

RESUMEN

The autoimmune channelopathies represent a rapidly evolving scientific and clinical domain. The description of channels, expressed on neurons and glia, as targets of autoantibodies in neuromyelitis optica, autoimmune encephalitis, and related syndromes have revolutionized many areas of neurologic practice. To date, tens of surface antibody specificities have been described, a number that is likely to continue to increase. A central paradigm for all these disorders is that of pathogenic autoantibodies which target extracellular epitopes accessible for binding in vivo. Hence, in these disorders, the autoantibodies are causative diagnostic tools, and provide valuable reagents to model the diseases. Their production by B-lineage cells provides opportunities to study and modulate their production. Across these syndromes, early recognition and treatment are critical since most respond to immunotherapies. Yet, several unmet medical needs persist within treated patient populations, and widespread clinical under-recognition remains a challenge. In this review, we summarize the neuroscience and immunologic basis of autoantibody-mediated central nervous system channelopathies, the molecular effects of the autoantibodies, clinical phenotypes, and treatment approaches. We describe progress since the inauguration of the field through to open questions and potential future directions.


Asunto(s)
Autoanticuerpos , Canalopatías , Humanos , Autoanticuerpos/inmunología , Canalopatías/inmunología , Animales
8.
Front Neurol ; 15: 1437913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193150

RESUMEN

Background: Autoimmune encephalitis (AIE) encompasses a spectrum of rare autoimmune-mediated neurological disorders, which are characterized by brain inflammation and dysfunction. Autoantibodies targeting the N-methyl-d-aspartic acid receptor (NMDAR) and leucine-rich glioma-inactivated 1 (LGI1) are the most common subtypes of antibody-positive AIE. Currently, there are no approved therapies for AIE. Interleukin-6 (IL-6) signaling plays a role in the pathophysiology of AIE. Satralizumab, a humanized, monoclonal recycling antibody that specifically targets the IL-6 receptor and inhibits IL-6 signaling, has demonstrated efficacy and safety in another autoantibody-mediated neuroinflammatory disease, aquaporin-4 immunoglobulin G antibody-positive neuromyelitis optica spectrum disorder, and has the potential to be an evidence-based disease modifying treatment in AIE. Objectives: CIELO will evaluate the efficacy, safety, pharmacodynamics, and pharmacokinetics of satralizumab compared with placebo in patients with NMDAR-immunoglobulin G antibody-positive (IgG+) or LGI1-IgG+ AIE. Study design: CIELO (NCT05503264) is a prospective, Phase 3, randomized, double-blind, multicenter, basket study that will enroll approximately 152 participants with NMDAR-IgG+ or LGI1-IgG+ AIE. Prior to enrollment, participants will have received acute first-line therapy. Part 1 of the study will consist of a 52-week primary treatment period, where participants will receive subcutaneous placebo or satralizumab at Weeks 0, 2, 4, and every 4 weeks thereafter. Participants may continue to receive background immunosuppressive therapy, symptomatic treatment, and rescue therapy throughout the study. Following Part 1, participants can enter an optional extension period (Part 2) to continue the randomized, double-blind study drug, start open-label satralizumab, or stop study treatment and continue with follow-up assessments. Endpoints: The primary efficacy endpoint is the proportion of participants with a ≥1-point improvement in the modified Rankin Scale (mRS) score from study baseline and no use of rescue therapy at Week 24. Secondary efficacy assessments include mRS, Clinical Assessment Scale of Autoimmune Encephalitis (CASE), time to rescue therapy, sustained seizure cessation and no rescue therapy, Montreal Cognitive Assessment, and Rey Auditory Verbal Learning Test (RAVLT) measures. Safety, pharmacokinetics, pharmacodynamics, exploratory efficacy, and biomarker endpoints will be captured. Conclusion: The innovative basket study design of CIELO offers the opportunity to yield prospective, robust evidence, which may contribute to the development of evidence-based treatment recommendations for satralizumab in AIE.

9.
Continuum (Minneap Minn) ; 30(4): 995-1020, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088286

RESUMEN

OBJECTIVE: This article focuses on the clinical features and diagnostic evaluations that accurately identify patients with ever-expanding forms of antibody-defined encephalitis. Forms of autoimmune encephalitis are more prevalent than infectious encephalitis and represent treatable neurologic syndromes for which early immunotherapies lead to the best outcomes. LATEST DEVELOPMENTS: A clinically driven approach to identifying many autoimmune encephalitis syndromes is feasible, given the typically distinctive features associated with each antibody. Patient demographics alongside the presence and nature of seizures, cognitive impairment, psychiatric disturbances, movement disorders, and peripheral features provide a valuable set of clinical tools to guide the detection and interpretation of highly specific antibodies. In turn, these clinical features in combination with serologic findings and selective paraclinical testing, direct the rationale for the administration of immunotherapies. Observational studies provide the mainstay of evidence guiding first- and second-line immunotherapy administration in autoimmune encephalitis and, whereas these typically result in some clinical improvements, almost all patients have residual neuropsychiatric deficits, and many experience clinical relapses. An improved pathophysiologic understanding and ongoing clinical trials can help to address these unmet medical needs. ESSENTIAL POINTS: Antibodies against central nervous system proteins characterize various autoimmune encephalitis syndromes. The most common targets include leucine-rich glioma inactivated protein 1 (LGI1), N-methyl-d-aspartate (NMDA) receptors, contactin-associated proteinlike 2 (CASPR2), and glutamic acid decarboxylase 65 (GAD65). Each antibody-associated autoimmune encephalitis typically presents with a recognizable blend of clinical and investigation features, which help differentiate each from alternative diagnoses. The rapid expansion of recognized antibodies and some clinical overlaps support panel-based antibody testing. The clinical-serologic picture guides the immunotherapy regime and offers valuable prognostic information. Patient care should be delivered in conjunction with autoimmune encephalitis experts.


Asunto(s)
Encefalitis , Enfermedad de Hashimoto , Humanos , Encefalitis/diagnóstico , Encefalitis/terapia , Encefalitis/inmunología , Enfermedad de Hashimoto/diagnóstico , Enfermedad de Hashimoto/terapia , Enfermedad de Hashimoto/inmunología , Femenino , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Masculino , Inmunoterapia/métodos , Adulto , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/terapia , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Persona de Mediana Edad
11.
Ann Clin Transl Neurol ; 11(7): 1897-1908, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012808

RESUMEN

OBJECTIVE: Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes. METHODS: This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA). RESULTS: The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH2)n-, -CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients. INTERPRETATION: This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.


Asunto(s)
Epilepsia Refractaria , Encefalitis , Humanos , Femenino , Epilepsia Refractaria/sangre , Epilepsia Refractaria/diagnóstico , Masculino , Adulto , Encefalitis/sangre , Encefalitis/diagnóstico , Persona de Mediana Edad , Diagnóstico Diferencial , Adulto Joven , Autoanticuerpos/sangre , Enfermedad de Hashimoto/sangre , Enfermedad de Hashimoto/diagnóstico , Metabolómica , Proteínas del Tejido Nervioso/sangre , Adolescente , Proteínas de la Membrana/sangre , Espectroscopía de Resonancia Magnética , Péptidos y Proteínas de Señalización Intracelular/sangre , Biomarcadores/sangre , Receptores de N-Metil-D-Aspartato/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/sangre , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/inmunología
13.
Front Immunol ; 15: 1423149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050850

RESUMEN

Introduction: Genetic predisposition to autoimmune encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDAR) is poorly understood. Given the diversity of associated environmental factors (tumors, infections), we hypothesized that human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptors (KIR), two extremely polymorphic gene complexes key to the immune system, might be relevant for the genetic predisposition to anti-NMDAR encephalitis. Notably, KIR are chiefly expressed by Natural Killer (NK) cells, recognize distinct HLA class I allotypes and play a major role in anti-tumor and anti-infection responses. Methods: We conducted a Genome Wide Association Study (GWAS) with subsequent control-matching using Principal Component Analysis (PCA) and HLA imputation, in a multi-ethnic cohort of anti-NMDAR encephalitis (n=479); KIR and HLA were further sequenced in a large subsample (n=323). PCA-controlled logistic regression was then conducted for carrier frequencies (HLA and KIR) and copy number variation (KIR). HLA-KIR interaction associations were also modeled. Additionally, single cell sequencing was conducted in peripheral blood mononuclear cells from 16 cases and 16 controls, NK cells were sorted and phenotyped. Results: Anti-NMDAR encephalitis showed a weak HLA association with DRB1*01:01~DQA1*01:01~DQB1*05:01 (OR=1.57, 1.51, 1.45; respectively), and DRB1*11:01 (OR=1.60); these effects were stronger in European descendants and in patients without an underlying ovarian teratoma. More interestingly, we found increased copy number variation of KIR2DL5B (OR=1.72), principally due to an overrepresentation of KIR2DL5B*00201. Further, we identified two allele associations in framework genes, KIR2DL4*00103 (25.4% vs. 12.5% in controls, OR=1.98) and KIR3DL3*00302 (5.3% vs. 1.3%, OR=4.44). Notably, the ligands of these KIR2DL4 and KIR3DL3, respectively, HLA-G and HHLA2, are known to act as immune checkpoint with immunosuppressive functions. However, we did not find differences in specific KIR-HLA ligand interactions or HLA-G polymorphisms between cases and controls. Similarly, gene expression of CD56dim or CD56bright NK cells did not differ between cases and controls. Discussion: Our observations for the first time suggest that the HLA-KIR axis might be involved in anti-NMDAR encephalitis. While the genetic risk conferred by the identified polymorphisms appears small, a role of this axis in the pathophysiology of this disease appears highly plausible and should be analyzed in future studies.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Antígenos HLA , Células Asesinas Naturales , Receptores KIR , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Encefalitis Antirreceptor N-Metil-D-Aspartato/genética , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Receptores KIR/genética , Femenino , Masculino , Adulto , Antígenos HLA/genética , Antígenos HLA/inmunología , Persona de Mediana Edad , Adulto Joven
15.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38830760

RESUMEN

NMDA receptors (NMDARs) may be crucial to working memory (WM). Computational models predict that they sustain neural firing and produce associative memory, which may underpin maintaining and binding information, respectively. We test this in patients with antibodies to NMDAR (n = 10, female) and compare them with healthy control participants (n = 55, 20 male, 35 female). Patients were tested after recovery with a task that separates two aspects of WM: sustaining attention and feature binding. Participants had to remember two colored arrows. Then attention was directed to one of them. After a variable delay, they reported the direction of either the same arrow (congruent cue) or of the other arrow (incongruent cue). We asked how congruency affected recall precision and measured types of error. Patients had difficulty in both sustaining attention to an item over time and feature binding. Controls were less precise after longer delays and incongruent cues. In contrast, patients did not benefit from congruent cues at longer delays [group × congruency (long condition); p = 0.041], indicating they could not sustain attention. Additionally, patients reported the wrong item (misbinding errors) more than controls after congruent cues [group × delay (congruent condition), main effect of group; p ≤ 0.001]. Our results suggest NMDARs are critical for both maintaining attention and feature binding.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Atención , Memoria a Corto Plazo , Humanos , Masculino , Femenino , Memoria a Corto Plazo/fisiología , Adulto , Atención/fisiología , Encefalitis Antirreceptor N-Metil-D-Aspartato/fisiopatología , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Adulto Joven , Persona de Mediana Edad , Receptores de N-Metil-D-Aspartato/inmunología , Adolescente , Señales (Psicología)
16.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838283

RESUMEN

BACKGROUND AND OBJECTIVES: Patients with ongoing seizures are usually not allowed to drive. The prognosis for seizure freedom is favorable in patients with autoimmune encephalitis (AIE) with antibodies against NMDA receptor (NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), and the gamma-aminobutyric-acid B receptor (GABABR). We hypothesized that after a seizure-free period of 3 months, patients with AIE have a seizure recurrence risk of <20% during the subsequent 12 months. This would render them eligible for noncommercial driving according to driving regulations in several countries. METHODS: This retrospective multicenter cohort study analyzed follow-up data from patients aged 15 years or older with seizures resulting from NMDAR-, LGI1-, CASPR2-, or GABABR-AIE, who had been seizure-free for ≥3 months. We used Kaplan-Meier (KM) estimates for the seizure recurrence risk at 12 months for each antibody group and tested for the effects of potential covariates with regression models. RESULTS: We included 383 patients with NMDAR-, 440 with LGI1-, 114 with CASPR2-, and 44 with GABABR-AIE from 14 international centers. After being seizure-free for 3 months after an initial seizure period, we calculated the probability of remaining seizure-free for another 12 months (KM estimate) as 0.89 (95% confidence interval [CI] 0.85-0.92) for NMDAR, 0.84 (CI 0.80-0.88) for LGI1, 0.82 (CI 0.75-0.90) for CASPR2, and 0.76 (CI 0.62-0.93) for GABABR. DISCUSSION: Taking a <20% recurrence risk within 12 months as sufficient, patients with NMDAR-AIE and LGI1-AIE could be considered eligible for noncommercial driving after having been seizure-free for 3 months.


Asunto(s)
Autoanticuerpos , Encefalitis , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Receptores de GABA-B , Recurrencia , Humanos , Femenino , Masculino , Adulto , Péptidos y Proteínas de Señalización Intracelular/inmunología , Autoanticuerpos/sangre , Persona de Mediana Edad , Encefalitis/inmunología , Estudios Retrospectivos , Receptores de GABA-B/inmunología , Proteínas del Tejido Nervioso/inmunología , Adulto Joven , Proteínas de la Membrana/inmunología , Receptores de N-Metil-D-Aspartato/inmunología , Convulsiones/etiología , Convulsiones/inmunología , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/sangre , Anciano , Adolescente , Estudios de Seguimiento , Proteínas/inmunología , Estudios de Cohortes
17.
Immunity ; 57(7): 1696-1709.e10, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38878770

RESUMEN

Aicardi-Goutières syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)-α production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN-α remain unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN-α in AGS and confirmed the neurotoxicity of intracerebral IFN-α using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN-α-activated receptor (IFNAR) signaling within cerebral endothelial cells caused a distinctive cerebral small vessel disease similar to that observed in individuals with AGS. Magnetic resonance imaging (MRI) and single-molecule ELISA revealed that central and not peripheral IFN-α was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped the development of diffuse brain disease, and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN-α neurotoxicity in AGS, representing an accessible target for therapeutic intervention.


Asunto(s)
Encéfalo , Interferón-alfa , Microvasos , Malformaciones del Sistema Nervioso , Receptor de Interferón alfa y beta , Animales , Humanos , Ratones , Interferón-alfa/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Receptor de Interferón alfa y beta/metabolismo , Receptor de Interferón alfa y beta/genética , Microvasos/patología , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Células Endoteliales/metabolismo , Ratones Noqueados , Masculino , Femenino , Transducción de Señal , Ratones Endogámicos C57BL , Astrocitos/metabolismo , Modelos Animales de Enfermedad
18.
Br J Psychiatry ; 224(6): 252-257, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699852

RESUMEN

Leucine-rich glioma-inactivated 1-antibody-encephalitis is a treatable and potentially reversible cause of cognitive and psychiatric presentations, and may mimic cognitive decline, rapidly progressive dementia and complex psychosis in older patients. This aetiology is of immediate relevance given the alternative treatment pathway required, compared with other conditions presenting with cognitive deficits.


Asunto(s)
Autoanticuerpos , Demencia , Humanos , Demencia/terapia , Autoanticuerpos/sangre , Encefalitis/terapia , Encefalitis/diagnóstico , Encefalitis/inmunología , Péptidos y Proteínas de Señalización Intracelular , Diagnóstico Diferencial , Anciano , Servicios de Salud Mental , Femenino , Masculino
19.
Nat Hum Behav ; 8(7): 1366-1382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684870

RESUMEN

The role of the hippocampus in decision-making is beginning to be more understood. Because of its prospective and inferential functions, we hypothesized that it might be required specifically when decisions involve the evaluation of uncertain values. A group of individuals with autoimmune limbic encephalitis-a condition known to focally affect the hippocampus-were tested on how they evaluate reward against uncertainty compared to reward against another key attribute: physical effort. Across four experiments requiring participants to make trade-offs between reward, uncertainty and effort, patients with acute limbic encephalitis demonstrated blunted sensitivity to reward and effort whenever uncertainty was considered, despite demonstrating intact uncertainty sensitivity. By contrast, the valuation of these two attributes (reward and effort) was intact on uncertainty-free tasks. Reduced sensitivity to changes in reward under uncertainty correlated with the severity of hippocampal damage. Together, these findings provide evidence for a context-sensitive role of the hippocampus in value-based decision-making, apparent specifically under conditions of uncertainty.


Asunto(s)
Toma de Decisiones , Hipocampo , Recompensa , Humanos , Hipocampo/fisiopatología , Incertidumbre , Toma de Decisiones/fisiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Imagen por Resonancia Magnética
20.
Brain ; 147(8): 2636-2642, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662480

RESUMEN

One striking clinical hallmark in patients with autoantibodies to leucine-rich glioma inactivated 1 (LGI1) is the very frequent focal seizure semiologies, including faciobrachial dystonic seizures (FBDS), in addition to the amnesia. Polyclonal serum IgGs have successfully modelled the cognitive changes in vivo but not seizures. Hence, it remains unclear whether LGI1-autoantibodies are sufficient to cause seizures. We tested this with the molecularly precise monoclonal antibodies directed against LGI1 [LGI1-monoclonal antibodies (mAbs)], derived from patient circulating B cells. These were directed towards both major domains of LGI1, leucine-rich repeat and epitempin repeat, and infused intracerebroventricularly over 7 days into juvenile male Wistar rats using osmotic pumps. Continuous wireless EEG was recorded from a depth electrode placed in hippocampal CA3 plus behavioural tests for memory and hyperexcitability were performed. Following infusion completion (Day 9), post-mortem brain slices were studied for antibody binding and effects on Kv1.1. The LGI1-mAbs bound most strongly in the hippocampal CA3 region and induced a significant reduction in Kv1.1 cluster number in this subfield. By comparison to control-Ab injected rats video-EEG analysis over 9 days revealed convulsive and non-convulsive seizure activity in rats infused with LGI1-mAbs, with a significant number of ictal events. Memory was not impaired in the novel object recognition test. Peripherally-derived human LGI1-mAbs infused into rodent CSF provide strong evidence of direct in vivo epileptogenesis with molecular correlations. These findings fulfill criteria for LGI1-antibodies in seizure causation.


Asunto(s)
Anticuerpos Monoclonales , Autoanticuerpos , Péptidos y Proteínas de Señalización Intracelular , Ratas Wistar , Animales , Masculino , Ratas , Péptidos y Proteínas de Señalización Intracelular/inmunología , Humanos , Convulsiones/inmunología , Electroencefalografía , Proteínas/inmunología , Epilepsia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA