Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Nat Commun ; 15(1): 4550, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811547

RESUMEN

The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cabeza , Anfioxos , Mesodermo , Vertebrados , Animales , Mesodermo/citología , Mesodermo/embriología , Anfioxos/embriología , Anfioxos/genética , Cabeza/embriología , Vertebrados/embriología , Vertebrados/genética , Somitos/embriología , Somitos/citología , Somitos/metabolismo , Evolución Biológica , Transcriptoma
3.
Nat Ecol Evol ; 8(6): 1140-1153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622362

RESUMEN

Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.


Asunto(s)
Evolución Molecular , Insectos , Vertebrados , Animales , Insectos/genética , Vertebrados/genética , Especificidad de Órganos , Transcriptoma , Filogenia
4.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38452766

RESUMEN

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Asunto(s)
Empalme Alternativo , Complejo Represivo Polycomb 2 , Animales , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
5.
Mol Syst Biol ; 20(4): 296-310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438733

RESUMEN

Alternative Splicing (AS) programs serve as instructive signals of cell type specificity, particularly within the brain, which comprises dozens of molecularly and functionally distinct cell types. Among them, retinal photoreceptors stand out due to their unique transcriptome, making them a particularly well-suited system for studying how AS shapes cell type-specific molecular functions. Here, we use the Splicing Regulatory State (SRS) as a novel framework to discuss the splicing factors governing the unique AS pattern of photoreceptors, and how this pattern may aid in the specification of their highly specialized sensory cilia. In addition, we discuss how other sensory cells with ciliated structures, for which data is much scarcer, also rely on specific SRSs to implement a proteome specialized in the detection of sensory stimuli. By reviewing the general rules of cell type- and tissue-specific AS programs, firstly in the brain and subsequently in specialized sensory neurons, we propose a novel paradigm on how SRSs are established and how they can diversify. Finally, we illustrate how SRSs shape the outcome of mutations in splicing factors to produce cell type-specific phenotypes that can lead to various human diseases.


Asunto(s)
Células Receptoras Sensoriales , Transcriptoma , Humanos , Transcriptoma/genética , Células Fotorreceptoras , Empalme Alternativo/genética , Factores de Empalme de ARN/genética
6.
Transl Psychiatry ; 14(1): 99, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374212

RESUMEN

RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the contribution of rbfox1 to behaviour, we used rbfox1sa15940, a zebrafish mutant line with TL background. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 mutant line with a different genetic background (TU), rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that mutations in rbfox1 lead to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study, thus, highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.


Asunto(s)
Discapacidades del Desarrollo , Trastornos Mentales , Proteínas de Unión al ARN , Pez Cebra , Animales , Encéfalo/metabolismo , Fenotipo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Trastornos Mentales/genética , Discapacidades del Desarrollo/genética
7.
Cell ; 187(5): 1109-1126.e21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38382525

RESUMEN

Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.


Asunto(s)
Vesículas Citoplasmáticas , Oocitos , Agregado de Proteínas , Animales , Femenino , Ratones , Autofagosomas , Vesículas Citoplasmáticas/metabolismo , Lisosomas/metabolismo , Oocitos/citología , Oocitos/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteolisis
8.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216617

RESUMEN

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Asunto(s)
Anguila Babosa , Animales , Filogenia , Anguila Babosa/genética , Duplicación de Gen , Vertebrados/genética , Genoma , Lampreas/genética
9.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562845

RESUMEN

Splicing factor 3B subunit 1 (SF3B1) is involved in pre-mRNA branch site recognition and is the target of antitumor-splicing inhibitors. Mutations in SF3B1 are observed in 15% of patients with chronic lymphocytic leukemia (CLL) and are associated with poor prognosis, but their pathogenic mechanisms remain poorly understood. Using deep RNA-sequencing data from 298 CLL tumor samples and isogenic SF3B1 WT and K700E-mutated CLL cell lines, we characterize targets and pre-mRNA sequence features associated with the selection of cryptic 3' splice sites upon SF3B1 mutation, including an event in the MAP3K7 gene relevant for activation of NF-κB signaling. Using the H3B-8800 splicing modulator, we show, for the first time in CLL, cytotoxic effects in vitro in primary CLL samples and in SF3B1-mutated isogenic CLL cell lines, accompanied by major splicing changes and delayed leukemic infiltration in a CLL xenotransplant mouse model. H3B-8800 displayed preferential lethality towards SF3B1-mutated cells and synergism with the BCL2 inhibitor venetoclax, supporting the potential use of SF3B1 inhibitors as a novel therapeutic strategy in CLL.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Factores de Empalme de ARN/genética , Precursores del ARN , Fosfoproteínas/genética , Mutación/genética , Sitios de Empalme de ARN , Factores de Transcripción/genética
10.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37261882

RESUMEN

Human meiosis in oocytes entails an intricate regulation of the transcriptome to support late oocyte growth and early embryo development, both crucial to reproductive success. Currently, little is known about the co- and post-transcriptional mRNA processing mechanisms regulating the last meiotic phases, which contribute to transcriptome complexity and influence translation rates. We analyzed gene expression changes, splicing and pre-mRNA processing in an RNA sequencing set of 40 human oocytes at different meiotic maturation stages, matured both in vivo and in vitro. We found abundant untranslated region (UTR) processing, mostly at the 3' end, of meiosis-related genes between the germinal vesicle (GV) and metaphase II (MII) stages, supported by the differential expression of spliceosome and pre-mRNA processing related genes. Importantly, we found very few differences among GV oocytes across several durations of IVM, as long as they did not reach MII, suggesting an association of RNA processing and successful meiosis transit. Changes in protein isoforms are minor, although specific and consistent for genes involved in chromosome organization and spindle assembly. In conclusion, we reveal a dynamic transcript remodeling during human female meiosis, and show how pre-mRNA processing, specifically 3'UTR shortening, drives a selective translational regulation of transcripts necessary to reach final meiotic maturation.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Precursores del ARN , Humanos , Femenino , Precursores del ARN/genética , Precursores del ARN/metabolismo , Oocitos/metabolismo , Meiosis/genética , Oogénesis/genética
11.
Nucleic Acids Res ; 51(10): e56, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37026474

RESUMEN

Although splicing occurs largely co-transcriptionally, the order by which introns are removed does not necessarily follow the order in which they are transcribed. Whereas several genomic features are known to influence whether or not an intron is spliced before its downstream neighbor, multiple questions related to adjacent introns' splicing order (AISO) remain unanswered. Here, we present Insplico, the first standalone software for quantifying AISO that works with both short and long read sequencing technologies. We first demonstrate its applicability and effectiveness using simulated reads and by recapitulating previously reported AISO patterns, which unveiled overlooked biases associated with long read sequencing. We next show that AISO around individual exons is remarkably constant across cell and tissue types and even upon major spliceosomal disruption, and it is evolutionarily conserved between human and mouse brains. We also establish a set of universal features associated with AISO patterns across various animal and plant species. Finally, we used Insplico to investigate AISO in the context of tissue-specific exons, particularly focusing on SRRM4-dependent microexons. We found that the majority of such microexons have non-canonical AISO, in which the downstream intron is spliced first, and we suggest two potential modes of SRRM4 regulation of microexons related to their AISO and various splicing-related features. Insplico is available on gitlab.com/aghr/insplico.


Asunto(s)
Genoma , Empalme del ARN , Animales , Ratones , Humanos , Intrones/genética , RNA-Seq , Empalme del ARN/genética , Empalmosomas/genética , Empalme Alternativo , Proteínas del Tejido Nervioso/genética
12.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36865197

RESUMEN

RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the effect of rbfox1 deficiency on behaviour, we used rbfox1sa15940, a rbfox1 loss-of-function line. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 loss-of-function line with a different genetic background, rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that rbfox1 deficiency leads to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study thus highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.

13.
Cell Syst ; 14(4): 312-323.e3, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36889307

RESUMEN

Codon usage influences gene expression distinctly depending on the cell context. Yet, the importance of codon bias in the simultaneous turnover of specific groups of protein-coding genes remains to be investigated. Here, we find that genes enriched in A/T-ending codons are expressed more coordinately in general and across tissues and development than those enriched in G/C-ending codons. tRNA abundance measurements indicate that this coordination is linked to the expression changes of tRNA isoacceptors reading A/T-ending codons. Genes with similar codon composition are more likely to be part of the same protein complex, especially for genes with A/T-ending codons. The codon preferences of genes with A/T-ending codons are conserved among mammals and other vertebrates. We suggest that this orchestration contributes to tissue-specific and ontogenetic-specific expression, which can facilitate, for instance, timely protein complex formation.


Asunto(s)
Mamíferos , Vertebrados , Animales , Codón/genética , Mamíferos/genética , Vertebrados/genética , ARN de Transferencia/genética , Uso de Codones
14.
PLoS Biol ; 21(2): e3001986, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745672

RESUMEN

Circadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. Overall, most variation across tissues during day-night and among seasons was unique to each cycle. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways, and it was enriched among genes associated with the immune response, consistent with the seasonality of viral infections. Furthermore, they unveiled cytoarchitectural changes in brain regions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions. This atlas may have multiple applications; for example, drug targets with day-night or seasonal variation in gene expression may benefit from temporally adjusted doses.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Animales , Ratones , Estaciones del Año , Transcriptoma/genética , Adaptación Fisiológica , Ritmo Circadiano/genética
15.
Nat Metab ; 5(2): 219-236, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36759540

RESUMEN

Pancreatic islets control glucose homeostasis by the balanced secretion of insulin and other hormones, and their abnormal function causes diabetes or hypoglycaemia. Here we uncover a conserved programme of alternative microexons included in mRNAs of islet cells, particularly in genes involved in vesicle transport and exocytosis. Islet microexons (IsletMICs) are regulated by the RNA binding protein SRRM3 and represent a subset of the larger neural programme that are particularly sensitive to SRRM3 levels. Both SRRM3 and IsletMICs are induced by elevated glucose levels, and depletion of SRRM3 in human and rat beta cell lines and mouse islets, or repression of particular IsletMICs using antisense oligonucleotides, leads to inappropriate insulin secretion. Consistently, mice harbouring mutations in Srrm3 display defects in islet cell identity and function, leading to hyperinsulinaemic hypoglycaemia. Importantly, human genetic variants that influence SRRM3 expression and IsletMIC inclusion in islets are associated with fasting glucose variation and type 2 diabetes risk. Taken together, our data identify a conserved microexon programme that regulates glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Células Secretoras de Insulina , Ratas , Ratones , Humanos , Animales , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Glucosa/metabolismo , Hipoglucemia/metabolismo , Homeostasis/fisiología
16.
Genome Biol ; 23(1): 243, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401278

RESUMEN

BACKGROUND: Amphioxus are non-vertebrate chordates characterized by a slow morphological and molecular evolution. They share the basic chordate body-plan and genome organization with vertebrates but lack their 2R whole-genome duplications and their developmental complexity. For these reasons, amphioxus are frequently used as an outgroup to study vertebrate genome evolution and Evo-Devo. Aside from whole-genome duplications, genes continuously duplicate on a smaller scale. Small-scale duplicated genes can be found in both amphioxus and vertebrate genomes, while only the vertebrate genomes have duplicated genes product of their 2R whole-genome duplications. Here, we explore the history of small-scale gene duplications in the amphioxus lineage and compare it to small- and large-scale gene duplication history in vertebrates. RESULTS: We present a study of the European amphioxus (Branchiostoma lanceolatum) gene duplications thanks to a new, high-quality genome reference. We find that, despite its overall slow molecular evolution, the amphioxus lineage has had a history of small-scale duplications similar to the one observed in vertebrates. We find parallel gene duplication profiles between amphioxus and vertebrates and conserved functional constraints in gene duplication. Moreover, amphioxus gene duplicates show levels of expression and patterns of functional specialization similar to the ones observed in vertebrate duplicated genes. We also find strong conservation of gene synteny between two distant amphioxus species, B. lanceolatum and B. floridae, with two major chromosomal rearrangements. CONCLUSIONS: In contrast to their slower molecular and morphological evolution, amphioxus' small-scale gene duplication history resembles that of the vertebrate lineage both in quantitative and in functional terms.


Asunto(s)
Anfioxos , Animales , Anfioxos/genética , Duplicación de Gen , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Evolución Molecular
17.
Genome Biol ; 23(1): 196, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109769

RESUMEN

BACKGROUND: Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS: We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS: These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , ARN Largo no Codificante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Isoformas de Proteínas/genética , Empalme del ARN , ARN Largo no Codificante/metabolismo
18.
Annu Rev Genet ; 56: 315-337, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36055647

RESUMEN

Animal species present relatively high levels of gene conservation, and yet they display a great variety of cell type and tissue phenotypes. These diverse phenotypes are mainly specified through differential gene usage, which relies on several mechanisms. Two of the most relevant mechanisms are regulated gene transcription, usually referred to as gene expression (rGE), and regulated alternative splicing (rAS). Several works have addressed how either rGE or rAS contributes to phenotypic diversity throughout evolution, but a back-to-back comparison between the two molecular mechanisms, specifically highlighting both their common regulatory principles and unique properties, is still missing. In this review, we propose an innovative framework for the unified comparison between rGE and rAS from different perspectives: the three-dimensional (3D)-evo space. We use the 3D-evo space to comprehensively (a) review the molecular basis of rGE and rAS (i.e., the molecular axis), (b) depict the tissue-specific phenotypes they contribute to (i.e., the tissue axis), and (c) describe the determinants that drive the evolution of rGE and rAS programs (i.e., the evolution axis). Finally, we unify the perspectives emerging from the three axes by discussing general trends and specific examples of rGE and rAS tissue program evolution.


Asunto(s)
Empalme Alternativo , Animales , Empalme Alternativo/genética , Fenotipo , Expresión Génica
19.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35914530

RESUMEN

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Asunto(s)
Neurogénesis , Empalme del ARN , Empalme Alternativo , Animales , Exones/genética , Mamíferos , Ratones , Neurogénesis/genética , Neuronas , Proteínas de Unión al ARN/genética
20.
Mol Ecol ; 31(16): 4332-4350, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801824

RESUMEN

Insects are capable of extraordinary feats of long-distance movement that have profound impacts on the function of terrestrial ecosystems. The ability to undertake these movements arose multiple times through the evolution of a suite of traits that make up the migratory syndrome, however the underlying genetic pathways involved remain poorly understood. Migratory hoverflies (Diptera: Syrphidae) are an emerging model group for studies of migration. They undertake seasonal movements in huge numbers across large parts of the globe and are important pollinators, biological control agents and decomposers. Here, we assembled a high-quality draft genome of the marmalade hoverfly (Episyrphus balteatus). We leveraged this genomic resource to undertake a genome-wide transcriptomic comparison of actively migrating Episyrphus, captured from a high mountain pass as they flew south to overwinter, with the transcriptomes of summer forms which were non-migratory. We identified 1543 genes with very strong evidence for differential expression. Interrogation of this gene set reveals a remarkable range of roles in metabolism, muscle structure and function, hormonal regulation, immunity, stress resistance, flight and feeding behaviour, longevity, reproductive diapause and sensory perception. These features of the migrant phenotype have arisen by the integration and modification of pathways such as insulin signalling for diapause and longevity, JAK/SAT for immunity, and those leading to octopamine production and fuelling to boost flight capabilities. Our results provide a powerful genomic resource for future research, and paint a comprehensive picture of global expression changes in an actively migrating insect, identifying key genomic components involved in this important life-history strategy.


Asunto(s)
Dípteros , Transcriptoma , Migración Animal , Animales , Dípteros/genética , Ecosistema , Insectos/genética , Fenotipo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA