Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Hum Reprod ; 29(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36852862

RESUMEN

Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Caballos , Animales , Humanos , Femenino , Líquido Folicular/metabolismo , MicroARNs/metabolismo , Folículo Ovárico/metabolismo , Ovulación/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Mamíferos
2.
Theriogenology ; 192: 132-140, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36099803

RESUMEN

Despite the progress in assisted reproductive techniques, there is still a lack of rapid and minimally invasive in situ approaches for further enhancements of female fertility. Therefore, we synthesized clinically relevant liposome nanoparticles for ovarian intrafollicular injection to allow in vivo cellular imaging for future drug delivery, using the mare as an animal model. Ovarian follicles of living mares were injected in vivo with fluorescently labeled liposomes. Samples of the follicular wall (mural granulosa, theca interna, and theca externa), granulosa cells, and follicular fluid were harvested 24 h post-injection through the follicle wall biopsy (FWB), flushing, and aspiration techniques, respectively, using a transvaginal ultrasound-guided approach. In parallel, post-mortem dissected, and cultured porcine antral follicles were microinjected with doxorubicin-encapsulated liposomes to assess intracellular delivery potential. All injected mare and pig follicles were macroscopically healthy, and fluorescence imaging revealed successful intrafollicular binding to mural granulosa cells and progressive migration of liposomes to other follicle cell layers (theca interna, and theca externa), regardless of the follicle size. Intracellular delivery of doxorubicin was confirmed in all porcine follicle wall cell types. We conclude that the intrafollicular injection of nanomolecules is a promising approach for real-time monitoring of intrafollicular processes and potential utilization of in vivo cellular drug delivery to assist in follicle disease treatments and fertility improvement.


Asunto(s)
Liposomas , Ganado , Animales , Doxorrubicina/farmacología , Femenino , Células de la Granulosa/metabolismo , Caballos , Folículo Ovárico , Porcinos , Células Tecales/metabolismo
3.
Mol Reprod Dev ; 89(7): 298-311, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35762042

RESUMEN

The complex composition of the follicular fluid (FF), the intimate proximity to the oocyte, and the continual changes in their composition have a major effect on folliculogenesis and oogenesis. To date, the profiling of FF proteomes during follicle selection, development, and ovulation has not been comprehensively investigated. Therefore, a shotgun proteomics approach and bioinformatics analyses were used to profile the proteomes of equine FF harvested in vivo from follicles at the following development stages: predeviation (18-20 mm), deviation (22-25 mm), postdeviation (26-29 mm), preovulatory (30-35 mm), and impending ovulation. A total of 294 proteins were detected in FF (FDR <1%), corresponding to 65 common proteins and 124, 142, 167, 132, and 142 proteins in the predeviation, deviation, postdeviation, preovulatory, and impending ovulation groups, respectively. The higher expression of properdin and several other proteins belonging to the complement system during the deviation time and ovulation suggested their contribution in the selection of the future dominant follicle and ovulation. Apolipoprotein A-1 and antithrombin-III appeared to be important throughout folliculogenesis. The "complement and coagulation cascades" was the major KEGG pathway across all stages of follicle development. The significant expression of several proteins belonging to the serine-type endopeptidase indicated their likely contribution to follicle and oocyte development. Our data provide an extensive description and functional analyses of the equine FF proteome during follicle selection, development, and ovulation. This information will help improve understanding of the ovarian function and ovulatory dysfunctions and might serve as a reference for future biomarker discovery for oocyte quality assessment.


Asunto(s)
Líquido Folicular , Proteómica , Animales , Femenino , Líquido Folicular/metabolismo , Caballos , Folículo Ovárico/metabolismo , Ovulación , Proteoma/metabolismo
4.
Mol Reprod Dev ; 86(12): 1832-1845, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31571308

RESUMEN

The inability to obtain in vivo samples of antral follicle wall layers without removing the ovaries or sacrificing the animals has limited more in-depth studies on folliculogenesis. In this study, a novel ultrasound-guided follicle wall biopsy (FWB) technique was used to obtain in vivo follicle wall layers and follicular fluid samples of growing antral follicles. The expression of proliferative, hormonal, angiogenic, and pro-/antiapoptotic receptors and proteins in the follicular wall among three follicle classes were compared during the spring transitional anovulatory (SAN) and spring ovulatory (SOV) seasons in mares. The main findings observed in the granulosa, theca interna, and/or all follicle layers during the SOV season compared with the SAN season were (a) small-sized follicles (10-14 mm) had greater epidermal growth factor receptor (EGFR) and Bcl-2 expression; (b) medium-sized follicles during the expected deviation/selection diameter (20-24 mm) had greater expression of EGFR, Ki-67, luteinizing hormone receptor (LHR), and Bcl-2; and (c) dominant follicles (30-34 mm) had greater EGFR, Ki-67, vascular endothelial growth factor, LHR, and Bcl-2 expression. Estradiol related receptor alpha expression and intrafollicular estradiol concentration increased, along with an increase in follicle diameter in both seasons. In this study, the application of the FWB technique allowed a direct comparison of different receptors' expression among follicles in different stages of development and between two seasons using the same individuals, without jeopardizing their ovarian function. The successful utilization of the FWB technique and the mare as an experimental animal offer a great combination for future folliculogenesis studies on mechanisms of follicle selection, development, and ovulation in different species, including women.


Asunto(s)
Receptores ErbB/biosíntesis , Regulación de la Expresión Génica/fisiología , Folículo Ovárico/metabolismo , Ovulación/fisiología , Receptores de HL/biosíntesis , Estaciones del Año , Animales , Femenino , Caballos , Folículo Ovárico/citología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA