Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Total Environ ; 929: 172189, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583624

RESUMEN

This study explores the incorporation of Nb2AlC and Mo3AlC2 MAX phases, known for their nano-layered structure, into polyether sulfone (PES) membranes to enhance their antifouling and permeability properties for pathogen microorganism filtration against bovine serum albumin (BSA) and Escherichia coli (E. coli). The composite membranes were characterized for their structural and morphological properties, and their performance in mitigating biofouling was evaluated. The structural characterizations have been performed for all the prepared MAX phases and corresponding composite membranes. The antioxidant ability of Nb2AlC and Mo3AlC2 MAX phases was defined by the DPPH radical scavenging assay, and the highest antioxidant ability was found to be 59.35 %, while 53.69 % scavenging potential was recorded at 100 mg/L. The percentage scavenging ability was raised with an increase in concentrations. The antimicrobial properties of MAX phases, evaluated as the minimum inhibitory concentration, were stated against several pathogen microorganisms. The tested compounds of Nb2AlC and Mo3AlC2 composites containing MAX phases exhibited excellent chemical nuclease activity, and it was determined that Nb2AlC caused double strand DNA cleavage activity while Mo3AlC2 induced the complete fragmentation of the DNA molecule. Biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was studied against Staphylococcus aureus, and Pseudomonas aeruginosa and the maximum biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was found to be 77.15 % and 69.07 % against S. aureus and also 69.74 % and 65.01 % against P. aeruginosa. Furthermore, Nb2AlC and Mo3AlC2 MAX phases demonstrated excellent E. coli growth inhibition of 100 % at 125 and 250 mg/L.


Asunto(s)
Incrustaciones Biológicas , Escherichia coli , Membranas Artificiales , Polímeros , Sulfonas , Incrustaciones Biológicas/prevención & control , Sulfonas/farmacología , Sulfonas/química , Polímeros/farmacología , Escherichia coli/efectos de los fármacos , Biopelículas/efectos de los fármacos , Filtración
2.
Prep Biochem Biotechnol ; 54(3): 294-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37452678

RESUMEN

In this investigation, two new thermophilic bacteria were isolated. The new isolates were characterized by 16S rRNA, biochemical, morphological, and physiological analyzes and the isolates were identified as Geobacillus stearothermophilus strain Gecek20 and thermophilic Anoxybacillus flavithermus strain Gecek19. Various biological activities of extracellular Ag-NPs synthesized from thermophilic G. stearothermophilus strain Gecek20 and thermophilic A. flavithermus strain Gecek19 were evaluated. The produced NPs were analyzed by SEM, SEM-EDX, and XRD analyses. The antioxidant abilities of new synthesized Ag-NPs from thermophilic G. stearothermophilus strain Gecek20 (T1-Ag-NPs) and new synthesized Ag-NPs from thermophilic A. flavithermus strain Gecek19 (T2-Ag-NPs) were studied by DPPH inhibition and metal chelating ability. The highest DPPH and metal chelating abilities of T1-Ag-NPs and T2-Ag-NPs at 200 mg/L concentration were 93.17 and 90.85%, and 75.80 and 83.64%, respectively. The extracellular green synthesized T1-Ag-NPs and T2-AgN-Ps showed DNA nuclease activity at all tested concentrations. Moreover, both new synthesized Ag-NPs had antimicrobial activity against the strains studied, especially on Gram positive bacteria. T1-Ag-NPs and T2-AgNPs also showed powerful Escherichia coli growth inhibition. The highest biofilm inhibition percentages of T1-Ag-NPs and T2-Ag-NPs against Pseudomonas aeruginosa and Staphylococcus aureus were 100.0%, respectively, at 500 mg/L.


Asunto(s)
Anoxybacillus , Geobacillus stearothermophilus , Nanopartículas del Metal , ARN Ribosómico 16S , Plata/farmacología , Escherichia coli
3.
Chemosphere ; 339: 139340, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379977

RESUMEN

Antimicrobial resistance to antibiotics for current bacterial infection treatments is a medical problem. 2D nanoparticles, which can be used as both antibiotic carriers and direct antibacterial agents due to their large surface areas and direct contact with the cell membrane, are important alternatives in solving this problem. This study focuses on the effects of a new generation borophene derivative obtained from MgB2 particles on the antimicrobial activity of polyethersulfone membranes. MgB2 nanosheets were created by mechanically separating magnesium diboride (MgB2) particles into layers. The samples were microstructurally characterized using SEM, HR-TEM, and XRD methods. MgB2 nanosheets were screened for various biological activities such as antioxidant, DNA nuclease, antimicrobial, microbial cell viability inhibition, and antibiofilm activities. The antioxidant activity of nanosheets was 75.24 ± 4.15% at 200 mg/L. Plasmid DNA was entirely degraded at 125 and 250 mg/L nanosheet concentrations. MgB2 nanosheets exhibited a potential antimicrobial effect against tested strains. The cell viability inhibitory effect of the MgB2 nanosheets was 99.7 ± 5.78%, 99.89 ± 6.02%, and 100 ± 5.84% at 12.5 mg/L, 25 mg/L, and 50 mg/L, respectively. The antibiofilm activity of MgB2 nanosheets against S. aureus and P. aeruginosa was observed to be satisfactory. Furthermore, a polyethersulfone (PES) membrane was prepared by blending MgB2 nanosheets from 0.5 wt to 2.0 wt %. Pristine PES membrane also has shown the lowest steady-state fluxes at 30.1 ± 2.1 and 56.6 L/m2h for BSA and E. coli, respectively. With the increase of MgB2 nanosheets amount from 0.5 to 2.0 wt%, steady-state fluxes increased from 32.3 ± 2.5 to 42.0 ± 1.0 and from 15.6 ± 0.7 to 24.1 ± 0.8 L/m2h, respectively for BSA and E. coli. E. coli elimination performance of PES membrane coated with MgB2 nanosheets at different rates and the membrane filtration procedure was obtained from 96% to 100%. The results depicted that BSA and E. coli rejection efficiencies of MgB2 nanosheets blended PES membranes increased when compared to pristine PES membranes.


Asunto(s)
Antiinfecciosos , Boro , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa
4.
J Environ Manage ; 342: 118259, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37311349

RESUMEN

The wastewater generated from citric acid production has a high organic loading content. The treatment and reuse of citric acid wastewater with high organic loading become extremely important. In this study, the performance of calcium hydroxide (Ca(OH)2) precipitation as a low-cost and environmentally friendly pre-treatment method and aerobic membrane bioreactor (MBR) combined treatment system was investigated for the treatment of citric acid (CA) wastewater. At the first step, optimization parameters such as agitation speed (100, 150, 200 rpm), temperature (30, 50, 70 °C), and reaction time (2, 4, 6 h) for Ca(OH)2 precipitation as a pre-treatment method were investigated using response surface methodology (RSM) to achieve maximum chemical oxygen demand (COD) removal. Experimental sets were designed using Box-Behnken Design. As a result of pre-treatment with Ca(OH)2 precipitation, a COD removal efficiency of 97.3% was obtained. Then, pre-treated CA wastewater was fed continuously to the MBR process for 10 days, which was the second stage of the combined process. As a result of the MBR process, 92.0% COD removal efficiency was obtained for 24 h HRT and 10 days SRT. In total, 99.8% COD removal efficiency was obtained when combined process was used and COD concentration decreased from 52,000-114 mg/L. For the treatment and reuse of wastewater from citric acid production, Ca(OH)2 precipitation and MBR combined treatment systems demonstrated an effective strategy.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Membranas , Precipitación Química
5.
Environ Res ; 225: 115498, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804319

RESUMEN

Phosphorus (P) problem worries the whole world due to the increasing demand for finite and non-renewable natural phosphate resources and the inadequacy of sustainable phosphate production technologies. In this study, bio-acidification processes using waste sludge and food waste for simultaneous sustainable phosphate release and biogas production were investigated. Response surface methodology (RSM) was used for bio-acidification optimization. High performance was achieved with the addition of 10% FW and a temperature of 45 °C, which provided 5.30 pH and 371 mg/L P release for 10 days. A total of 196 mL of cumulative biogas was produced. Using food waste potentially reduces operating costs, eliminating the need for external chemical additions for pH control. Also, this approach offers benefits such as waste management, recovery of valuable resources, cost reduction, and environmental friendly.


Asunto(s)
Fosfatos , Eliminación de Residuos , Fermentación , Anaerobiosis , Reactores Biológicos , Alimentos , Biocombustibles , Aguas del Alcantarillado , Metano
6.
Environ Res ; 219: 115072, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529334

RESUMEN

In this research, nanoparticles derived from water extract of Centaurea solstitialis leaves were used as green adsorbent in Fenton reaction for Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes removal. At optimum operating conditions, nanoparticles proved high performance in the tested dyes removal with more than 98% of removal elimination. The free-radical scavenging, DNA nuclease, biofilm inhibition capability, antimicrobial activity, microbial cell viability, and antimicrobial photodynamic therapy activities of the iron oxide nanoparticles (FeO-NPs) derived from water and methanol extract of plant were investigated. Each of the following analysis: SEM-EDX, XRD, and Zeta potential was implemented for the prepared NPs characterization and to describe their morphology, composition and its behavior in an aqueous solution, respectively. It was found that, the DPPH scavenging activities increased when the amount of nanoparticles increased. The highest radical scavenging activity achieved with FeO-NPs derived from water extract of plant as 97.41% at 200 mg/L. The new green synthesized FeO-NPs demonstrated good DNA cleavage activity. FeO-NPs showed good in vitro antimicrobial activities against human pathogens. The results showed that both synthesized FeO-NPs displayed 100% antimicrobial photodynamic therapy activity after LED irradiation. The water extract of FeO-NPs and methanol extract of FeO-NPs also showed a significant biofilm inhibition.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Humanos , Agua , Metanol , Nanopartículas/química , Antiinfecciosos/farmacología , Colorantes/química , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
7.
Environ Res ; 216(Pt 1): 114357, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122703

RESUMEN

The use of synthetic dyes in the textile industry pollutes a huge amount of water. Thus, wastewater discharged from many textile companies to the receiving environment without being treated causes serious environmental and human health problems. The development of new techniques has become imperative. In this study, it was aimed to remove anionic dye (RR180) and cationic dye (BR18) by Fenton-like and adsorption process with hydrochars obtained from laurel leaves and watermelon peels. In the comparison of the adsorption and Fenton-like processes used in the dye removal of the produced bio-based materials, the Fenton-like process was selected in order to enhance the highest removal efficiency. The effects of various operating factors such as solution pH, amount of catalysts, hydrogen peroxide (H2O2) concentration, and initial dye concentration were evaluated on both dyes removal. The experimental results demonstrated that 99.8% RR180 dye and 98.8% BR18 dye removal efficiency were observed for an initial dye concentration of 100 mg/L with an adsorbent concentration of 1 g/L, H2O2 concentration of 15 µL/L, and optimum pH at the end of 60 min of reaction time. It was observed that an increase in initial dye concentration caused to decrease the dye removal efficiency. The optimum pH for the highest RR180 and BR18 dye removal was 4 and 6, respectively. It was observed that the increase in H2O2 concentration in the solution also decreased the dye removal efficiency. It turned out that catalysts obtained from hydrochars are an effective process for the high removal performance of cationic and anionic dyes.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Colorantes , Peróxido de Hidrógeno , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Aguas Residuales
8.
Chemosphere ; 308(Pt 2): 136216, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36075362

RESUMEN

In this study, the electrooxidation (EO) and membrane processes were used for chemical oxygen demand (COD) and total phenol (TPh) removal from wet scrubber wastewater (WSW). EO experiments were carried out using Al, Fe, SS, Ti, graphite, active carbon cloth electrodes and Box-Behnken design were used for optimization of maximum COD and TPh removal efficiency. Moreover, membrane filtration experiments were conducted to EO process using nanofiltration (NF270) and reverse osmosis membranes (SW30 and BW30). The maximum COD (55%) and TPh (50%) removal efficiency was achieved at pH of 8, 150 A/m2 current density, and 180 min reaction time in EO process. Membrane filtration results showed that COD removal efficiency was the highest for SW30 membrane (95.18%) compared to BW30 (91.15%) and NF270 (80.11%) membranes. TPh removal efficiency in the NF270, BW30, and SW30 membranes was 27.08%, 96.06%, and 98.02%, respectively. The effect of microbial cell viability of the raw and treated wet scrubber wastewater after electrooxidation and membrane filtration was also investigated using E. coli. In addition to these, biofilm inhibition of the raw wet scrubber wastewater and the treated WSW after EO and membrane filtration were tested and the highest biofilm inhibition was found as 76.43% and 72.58% against S. aureus and P. aeruginosa, respectively, in 1/20 diluted samples of the raw WSW. This study suggests that the integrated process using EO and pressure-driven membrane methods are an efficient strategy for COD and TPh removal from WSW.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Escherichia coli , Filtración , Residuos Industriales/análisis , Fenol , Fenoles , Staphylococcus aureus , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Purificación del Agua/métodos
9.
Food Chem Toxicol ; 165: 113170, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35613679

RESUMEN

In this study, synthesis of silver nanoparticles (AgNPs) was carried out utilizing the red and green parts of the pistachio hulls then their several biological activities were investigated. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) activities of the AgNPs synthesized from red pistachio hulls extracts (PhR-AgNPs) and green pistachio hulls extracts (PhG-AgNPs) were investigated. The DPPH scavenging capability at 200 mg/L concentration of PhR-AgNPs was around 93.01% however PhG-AgNPs displayed 91.00%. The synthesized PhR-AgNPs and PhG-AgNPs acted on the E. coli plasmid DNA, causing its complete degradation and exhibiting effective chemical nuclease activity. Furthermore, PhR-AgNPs and PhG-AgNPs showed quite good antimicrobial activity against the studied strains with a range of the minimum inhibition concentration (MIC) of 8-16 mg/L. Moreover, it was observed that both pistachio hulls coated with AgNPs were highly effective in inhibiting the biofilm generation studied strains. Moreover, PhR-AgNP and PhG-AgNP displayed a completely inhibition effect on cellular viability of E. coli with 100% at 125 mg/L.


Asunto(s)
Nanopartículas del Metal , Pistacia , Antibacterianos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Plata/farmacología
10.
J Environ Manage ; 317: 115326, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35636107

RESUMEN

Sustainable, effective and environmentally friendly methods are needed in wastewater treatment as quality water is necessary for a healthy life. Valorisation of solid food waste is also of great importance. This study examines the effectiveness of hydrolysed waste eggshells (HES), a green catalyst, in pistachio processing wastewater (PPWW) treatment using subcritical water oxidation (SWO). HES was prepared in the subcritical water medium (513 K, 100 bar of N2, 2 h) with a 92.3% yield. 88.8% of COD, 100% of both TPC and color removals of PPWW were achieved. The effects of independent variables such as temperature (363-403 K), treatment time (20-100 min), the concentration of H2O2 (0.25-1.25 M) and amount of catalyst (0-100 mg/100 mL) on the responses were investigated using response surface methodology (RSM). SEM, EDX and XRD were used to investigate the characterization of the waste eggshells. The percentage of Ca in HES increased with the hydrolysis, thus CaO increased the catalysis of hydrogen peroxide to form hydroxyl radicals.


Asunto(s)
Pistacia , Eliminación de Residuos , Contaminantes Químicos del Agua , Animales , Catálisis , Cáscara de Huevo , Alimentos , Peróxido de Hidrógeno , Oxidación-Reducción , Residuos Sólidos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Agua
11.
Water Environ Res ; 94(4): e10717, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35466487

RESUMEN

In this study, a hybrid process for leachate wastewater treatment including evaporation and reverse osmosis (RO) membrane or biological treatment systems was suggested. Experiments were performed on a real landfill leachate wastewater. The leachate was subjected to evaporation; as a result, a distillate was obtained containing less organic matter and less substantial amounts of other pollutants, as ammonium salts and total phenols were removed. Tests were carried out at different evaporation temperatures and times. The initial leachate pH was adjusted and optimized. For optimum conditions, each of chemical oxygen demand (COD), total phenol, and ammonium salt concentrations were reduced to 99.99%, 95.00%, and 83.00%, respectively. The distillate of the first stage of the proposed process was then exposed to RO membrane system, as a first study, under different transmembrane pressure of 20, 30, and 40 bar and at different pH values of 7, 8, and 9. As a second suggested treatment system, the distillate was subjected to a biological treatment process for 30 days as a retention time, pH = 6, and room temperature 25°C ± 1°C. At the end of the research study, a comparison was conducted between results obtained with RO membrane separation and biological treatment system as two distinct treatment systems proposed for leachate landfill wastewater treatment. Although both systems were effective for landfill leachate wastewater treatment, however, with the RO membrane separation system, COD removal efficiency reached 99.99%. In the other hand, with biological treatment process, COD elimination was as much as 90.00%. Certainly, evaporation and RO are not novel ways of landfill leachate treatment; however, few studies have attempted to use similar combined system for landfill leachate wastewater treatment and attained effective results of treated water. PRACTITIONER POINTS: A hybrid process of evaporation and RO membrane or biological treatment systems was suggested for leachate wastewater treatment. For optimum conditions, COD, total phenols, and ammonium salt reductions were achieved to 99.99%, 95%, and 83%, respectively, after the first evaporation stage. The distillate of the first stage of the proposed process was then exposed to RO membrane system and biological treatment system. Different transmembrane pressure and different pH values were optimized for RO.

12.
Environ Res ; 212(Pt A): 113210, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35398079

RESUMEN

In this study, hydrochar-based-eggshell was prepared via the subcritical water medium (SCWM) and used as a catalyst in the thermally activated peroxide oxidation (TAPO) approach for crystal violet and dye bathing wastewater degradation. The catalytic activities for the raw eggshell (RES) and hydrochar-based-eggshell (HES) were compared. RES and HES were characterized using a scanning electron microscope (SEM),energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transforms infrared spectroscopy (FT-IR). The affecting parameters on the degradation process were optimized using response surface methodology (RSM). The effects of temperature (293-333 K), amount of catalyst (5-25 mg/50 mL), the concentration of H2O2 (0-8 mM), and treatment time (10-70 min) on the TAPO method were investigated using central composite design (CCD). For the crystal violet removal, two models were developed. Both models were significant and can be used to describe the design space. Also, the dye bathing wastewater degradation was described by another developed model, which had a high correlation coefficient (R2 = 0.97). In general, catalytic activity for HES was higher than RES. The degradation of crystal violet reached 98.10% when a 20 mg HES catalyst and 6 mM H2O2 at 323 K for 55 min were used. While 97% of the color of dye bathing wastewater was removed in 55 min at 323 K using 25 mg of HES and 4 mM H2O2. This study showed that the hydrolyzed eggshells could be used in the oxidation of crystal violet and dye bathing wastewater by the thermally activated peroxide oxidation method.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Animales , Catálisis , Cáscara de Huevo , Violeta de Genciana/química , Peróxido de Hidrógeno/química , Peróxidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química
13.
Water Sci Technol ; 84(10-11): 2652-2660, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34850683

RESUMEN

This study aims to investigate the treatability of the wastewater generated from the sesame seeds dehulling process by a combination of electrochemical techniques with a membrane filtration system. Chemical oxygen demand (COD) and phenol removal performances were studied for four different cathodes material (iron (Fe), aluminum (Al), platinum (Pt), and boron-doped diamond (BDD)) at different current densities in the electrochemical treatment stage. The maximum removal efficiency was obtained when the BDD electrodes were used. The optimum conditions were 100 A/m2 of current density and 120 min of electrolysis period, where 40% and 85% of COD and phenol removals subsequently were achieved. The generated water from the first stage was passed through two different membrane systems. The membrane systems were microfiltration and ultrafiltration. The uptake performance for microfiltration was 22% and 17% for COD and phenol reduction subsequently. The ultrafiltration performed well and has given an additional removal of 27% and 20% of both COD and phenol reduction, respectively. The final results showed the importance of the studied combined systems and the additional value to the final obtained water quality.


Asunto(s)
Sesamum , Contaminantes Químicos del Agua , Purificación del Agua , Diamante , Técnicas Electroquímicas , Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
14.
Water Environ Res ; 93(12): 3075-3089, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34734653

RESUMEN

This study evaluates the production of hydrochars from the outer shells of the nut group (peanut, hazelnut, walnut, and pistachio) in an eco-friendly subcritical water medium (SWM) and their effects as adsorbents on the removal of crystal violet (CV) from an aqueous solution. The prepared hydrochars were characterized using Brunauer Emmett-Teller (BET) analysis, scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), and zeta potential. The adsorption process was optimized based on pH, adsorbent dose, dye concentration, and contact time. The hazelnut hydrochar was found to have the maximum removal efficiency (91%). Optimum conditions were pH of 8, particle size <45 µm, adsorption time of 60 min, and dye concentration of 25 mg/L. The results of all hydrochars were fitted to the second-order kinetics. Langmuir, Freundlich, and Redlich-Peterson isotherms models were used to explain the relationship between adsorbent and adsorbate. For all hydrochars, CV adsorption was found to be feasible and inherently spontaneous. The use of materials with no commercial value like; the outer shells of the nut group, is considered a method for waste reduction using the SWM method. PRACTITIONER POINTS: Hydrochars of nut group were synthesized in the subcritical water medium. Adsorption ability of the hydrochars in the adsorption of crystal violet were investigated. Adsorption isotherms were used to explain the relationship between adsorbent and adsorbate. The hazelnut hydrochar provided the maximum removal efficiency (91%). Hazardous water pollutant effectively removed using an eco-friendly method.


Asunto(s)
Violeta de Genciana , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Nueces , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Aguas Residuales , Agua
15.
Water Sci Technol ; 84(5): 1245-1256, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34534120

RESUMEN

In this study, electrochemical oxidation of combed fabric dyeing wastewater was investigated using graphite electrodes. The response surface methodology (RSM) was used to design the experiments via the central composite design (CCD). The planned experiments were done to track color changes and chemical oxygen demand (COD) removal. The experimental results were used to develop optimization models using RSM and the artificial neural network (ANN) and they were compared. The developed models by the two methods were in good agreement with the experimental results. The optimum conditions were found at 150 A/m2, pH 5, and 120 min. The removal efficiencies for color and COD reached 96.6% and 77.69%, respectively. The operating cost at the optimum conditions was also estimated. The energy and the cost of 1 m3 of wastewater required 34.9 kWh and 2.58 US$, respectively. The graphite electrodes can be successfully utilized for treatment of combed fabric dyeing wastewater with reasonable cost.


Asunto(s)
Grafito , Aguas Residuales , Electrodos , Redes Neurales de la Computación , Textiles
16.
Water Environ Res ; 93(11): 2780-2794, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34453770

RESUMEN

This study concerns the preparation of novel adsorbent prepared from calcium alginate bead modified with polyethyleneimine (PEI-CaAlg). The adsorption capacity of the PEI-CaAlg was examined by Remazol Brilliant Blue R (RBBR) and phosphate adsorption. PEI-CaAlg showed high removal efficiencies for RBBR (90.48%) and phosphate (88.10%). The removal of both RBBR and phosphate onto the PEI-CaAlg followed the Freundlich isotherm and the second-order model. The adsorption was studied in terms of thermodynamic and found to be feasible and spontaneous in nature. The reusability of the modified alginate beads was also examined up to five cycles. The removal efficiency was 90.48% at the first cycle and decreased to 75.15% at the end of the fourth cycle. The adsorption of color and phosphate from real textile wastewater was also instigated. The removal efficiencies for color and phosphate ions reached 80.24% and 90.00%, respectively. Therefore, the prepared PEI-CaAlg can be considered as a novel, eco-friendly, and cost-effective adsorbent for simultaneous dye and phosphate adsorption. PRACTITIONER POINTS: This study aims to modify the surface of calcium alginate beads with polyethyleneimine (PEI). The adsorption of RBBR and phosphate by the modified alginate beads (PEI-CaAlg) was investigated. PEI is an organic polymer with a linear/branch shape, which can increase the active sites on the adsorbent surface. PEI has one nitrogen atom in every three atoms provides a positive charge that can complex with the negatively charged molecules. The adsorption of RBBR and phosphate were carried out onto PEI-CaAlg.


Asunto(s)
Alginatos , Contaminantes Químicos del Agua , Adsorción , Antraquinonas , Concentración de Iones de Hidrógeno , Cinética , Fosfatos , Polietileneimina
17.
Chemosphere ; 244: 125383, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31790993

RESUMEN

The effect of electrochemical pre-treatment on fungal treatment of pistachio processing wastewater (PPW) was investigated. Electrocoagulation (EC) and electrooxidation (EO) were used as electrochemical pre-treatment step before fungal treatment of PPW. Aluminum (Al/Al), iron (Fe/Fe), and stainless steel (SS/SS) electrode pairs were selected as anode/cathode for EC whereas boron doped diamond (BDD/SS) was preferred as anode/cathode electrode pairs for EO experiments in this study. The impact of current density (50-300 A/m2) and operating time (0-240 min) were tested for chemical oxygen demand (COD) and total phenol removal. After pre-treatment of PPW, four different fungus species (Coriolus versicolor, Funalia trogii, Aspergillus carbonarius, and Penicillium glabrum) were tested for further treatment. Penicillium glabrum supplied maximum COD and total phenol removal efficiency compared to other fungus strains. The combined electrochemical-assisted fungal treatment process supplied 90.1% COD and 88.7% total phenol removal efficiency when supported with EO pre-treatment. Pre-treatment of PPW with EO method provided better results than EC method for fungal treatment. Operating cost of the combined process was calculated as 6.12 US$/m3. The results indicated that the proposed combined process supplied higher pollutant removal compared to the individual electrocoagulation, electrooxidation, and fungal treatment process.


Asunto(s)
Residuos Industriales/análisis , Pistacia , Eliminación de Residuos Líquidos/métodos , Aluminio/análisis , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Boro , Electrocoagulación/métodos , Electrodos , Hongos/metabolismo , Hierro , Fenol , Fenoles , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA