Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Monit Assess ; 196(6): 513, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709416

RESUMEN

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Metales Pesados , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Monitoreo Biológico/métodos , Ciudades , Briófitas/química , Industrias , Contaminación del Aire/estadística & datos numéricos , Turquía
2.
Environ Monit Assess ; 196(3): 282, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369612

RESUMEN

The increase in heavy metal concentrations in the air, especially after the Industrial Revolution, is notable for the scientific world because of the adverse effects that threaten environmental and human health. Among the trace elements, nickel (Ni) is carcinogenic, and all barium (Ba) compounds are toxic. Trace elements are critical for human and environmental health. Their threat further increases, especially in the urban areas and surroundings with a high population. In urban areas, the trace element contamination in the airborne can be reduced using plants. However, which plant and plant organs absorb trace elements could not be determined. In the present study, Ni and Ba concentrations in the branch, wood, and leaf samples of 14 species collected from the city center of Mersin province were determined. As a result, broad-leaved species' Ni and Ba concentrations in their leaf sample were generally higher than other species. Almost all species had the lowest Ni and Ba concentrations in their wood samples. Among these 14 species, it was found that Ni concentration was very high, especially in non-washed leaves of Platanus orientalis, Photinia serrulata, and Citrus reticulate, and Ba concentration was very high in Citrus reticulata, Chamaecyparis lawsoniana, Laurus nobilis, and Acer hyrcanum. Using broad-leaved species in urban areas where pollution is at high levels will significantly contribute to reducing Ni and Ba pollution. It is recommended that these points be considered in future urban landscaping projects.


Asunto(s)
Metales Pesados , Oligoelementos , Humanos , Níquel , Turquía , Monitoreo del Ambiente , Metales Pesados/análisis , Plantas
3.
Environ Monit Assess ; 195(12): 1448, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37945787

RESUMEN

Over the past three decades, global urbanization and climate change have caused significant differences in climate conditions between urban and rural environments. The effects of global warming affect the climatic values in the urban area. The bioclimatic comfort in an area effectively chooses a site regarding the urban quality of life and activities. This study aims to predict the temporal and spatial changes of the bioclimatic comfort zones of Gaziantep province in terms of climate comfort in the context of long-term global scenarios. The future climate simulation maps were produced and analyzed comparing comfort conditions according to Shared Socioeconomic Pathways (SSPs) 245 and 585 scenarios of the Intergovernmental Panel on Climate Change's (IPCC) Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6). Spatio-temporal changes in temperature, humidity, and bioclimatic comfort areas were analyzed to inform these efforts according to Thom's discomfort index (DI) and effective temperature-taking wind velocity (ETv). The current situation of bioclimatic comfort areas to examine their synergy under extreme hot weather throughout the province and their possible concerns in 2040, 2060, 2080, and 2100 were modeled using ArcGIS 10.8 software. SSP585/2100 will create hot (84%) areas, according to DI, and warm (29%) areas, according to ETv. The spatial results of the research are discussed, and some strategies are produced in terms of urban planning, design, and engineering.


Asunto(s)
Monitoreo del Ambiente , Calidad de Vida , Monitoreo del Ambiente/métodos , Temperatura , Viento , Urbanización , Cambio Climático
4.
Environ Sci Pollut Res Int ; 30(50): 108706-108719, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37752402

RESUMEN

Both indoor and outdoor contamination continually contain benzene vapor. It has primary concerns about long-term health risks to the living environment. Benzene is a crucial airborne pollutant in the environment due to its apparent acute toxicity, high volatility, and poor degradability. It is especially urgent to restrain benzene emissions due to the persistent concentration increase and stringent processes. Benzene adsorption is a highly efficient mechanism with low cost, low energy consumption, and a simple process. In this study, biomass-derived porous carbon materials (TCACs) were synthesized by pyrolysis activation combined with H3PO4, HNO3, and HCl. TCAC44 has the best activation conclusion, showing that surface area and pore volume were 1107 m2/g and 0.58 cm3/g treated with H3PO4 and so was chosen for subsequent benzene adsorption/desorption tests. The adsorption capacities of benzene for TCAC44 were increased from 58 mg/g for 35 °C + 95% RH to 121 mg/g for 25 °C + 15% RH and presented a higher adsorption capacity of benzene than TCAC101 and TCAC133. Otherwise, well recyclability of TCAC44 was revealed as the benzene adsorption capacity reductions were 22.49% after five adsorption-desorption cycles. Furthermore, the present study established the property-application relationships to promote and encourage future research on the newly synthesized innovative TCAC44 for benzene removal.


Asunto(s)
Benceno , Compuestos Orgánicos Volátiles , Carbón Orgánico , Lignina , Adsorción , Gases
5.
Environ Monit Assess ; 195(9): 1085, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615782

RESUMEN

The urbanization processes with growing vehicle numbers cause heavy metal pollution in street dust, and high populations in metropolitan cities are exposed to pollutants. This paper aims to monitor the spatial distribution of heavy metals and evaluate the concentrations via health risk assessment of HMs (Cu, Ni, Cd, Co, Pb, and Zn) that expose the inhabitants to health hazards. According to the results of the current study, sixty street dust samples were applied to the acid digestion technique and quantification by inductively coupled plasma-mass spectrometry (ICP-MS). The spatial distribution of the selected heavy metals in the street dust was investigated using the spatial analysis tool in ArcGIS 10.0 according to population density and land use. In the present study, we used hazard index and cancer risk methods to estimate the public health risk of the pollutants exposed to street dust in Ankara. The concentrations range of the elements in street dust over the study area ranged from 3.34-4.50, 31.69-42.87, 16.09-21.54, 42.85-57.55, 0.00-3.51, and 23.03-30.79, respectively. The overall decreasing order of mean concentration of metals was observed as follows: Pb > Cu > Ni > Co > Cd > Zn. Vehicle traffic and industrial activities seem to be the most critical anthropogenic sources responsible for dust pollution in the study area. The risk assessment of Pb and Ni exposure was the highest, and the hazard index values were 2.42E + 00 and 2.28E + 00 mg/kg/day for children. However, the effect on adults was 2.62E-01 and 2.37E-02 mg/kg/day, followed by inhalation and dermal contact with street dust was almost negligible. The decreasing concentration is modeled spatially along the western development corridor of the city. The risk to public health is high in areas with high densities close to the city center and the main artery.


Asunto(s)
Cadmio , Contaminantes Ambientales , Adulto , Niño , Humanos , Plomo , Monitoreo del Ambiente , Intoxicación por Metales Pesados , Medición de Riesgo , Polvo
6.
Environ Sci Pollut Res Int ; 30(30): 75768-75776, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225952

RESUMEN

Tobacco smoke causes to release severe toxic metals into the environment. It is recognized as the most significant issue in indoor air quality. Pollution and toxic substances in smoke quickly spread and penetrate the indoor environment. Environmental tobacco smoke is responsible for lowering indoor air quality. There is much evidence that poor air quality occurs with inadequate ventilation conditions in indoor environments. The plants have been observed to absorb the smoke in the environment into their own body like a sponge. The plant species in this study can be used easily in almost every office, home, or other indoor areas. Using indoor plants is very beneficial in biomonitoring and absorbing these trace metals. Some indoor plants have shown successful performance as biomonitors for health-damaging pollutants. The study aims to determine the concentration of three trace metals (Cu, Co, and Ni) using five indoor ornamentals frequently used in smoking areas, namely D. amoena, D. marginata, F. elastica, S. wallisii, and Y. massengena. The Ni uptake and its accumulation in S. wallisii, and Y. massengena increased in correlation with smoke areas. However, the rate of accumulation of Co and Cu was found to be independent due to consideration of the environmental emissions. Consequently, our results suggest that F. elastica is more resistant to smoking, whereas S. wallisii would be a better choice as a biomonitoring plant of tobacco smoke.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Contaminación por Humo de Tabaco , Contaminación por Humo de Tabaco/análisis , Goma , Contaminación del Aire Interior/análisis , Monitoreo Biológico , Monitoreo del Ambiente/métodos
7.
Molecules ; 28(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110686

RESUMEN

Removal of benzene is essential for human and environmental health because it has toxic and hazardous properties at various concentrations. Theseneed to be effectively eliminated with carbon-based adsorbents. PASACs, carbon-based adsorbents obtained from using the needles of Pseudotsuga menziesii, were produced by optimized HCl- and H2SO4-impregnated approaches. Regarding physicochemical structure, the optimized PASAC23 and PASAC35 with surface areas of 657 and 581 m2/g and total pore volumes of 0.36 and 0.32 cm3/g showed ideal temperatures of 800 °C. In order to investigate and compare internal benzene removal efficiency, PASAC23 and PASAC35 were studied separately. Initial concentrations were found to range from 5 to 500 mg/m3, and between 25 and 45 °C. The removal rate of benzene by PASAC23 and PASAC35 was 97 and 94% at low concentrations, respectively. While the highest capture amount for PASAC23 and PASAC35 was found to be at 25 °C with 141 and 116 mg/g, the adsorption capacity decreased to 102 and 90 mg/g at 45 °C. The holding capacity decreased between 22.41 and 27.66% due to increasing temperatures. After five cycles of PASAC23 and PASAC35 regeneration, we found that they could remove 62.37 and 58.46% of benzene, respectively. These results confirmed that PASAC23 is a promising environmentally adsorbent for effectively removing benzene with a competitive yield.

8.
Appl Biochem Biotechnol ; 195(8): 4864-4880, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093534

RESUMEN

Benzene, toluene, ethylbenzene, and xylene (BTEX) removal is one of the most common difficulties in air pollution control. They are emitted from several processes, prejudicial to the environment and humans. BTEX leads to various environmental risks, and there is a significant need for a creating process for the complete removal of BTEX from air streams. This study's objective is the multi-component adsorption of BTEX pollutants from an air stream, by synthesizing activated carbons (ACs) under several operations. A lignocellulosic waste biomass, Abelmoschus esculentus L. (AE), was utilized as the precursor for synthesizing activated carbons (AE-ACs), and their surface chemical characteristics were investigated. Optimization processes were examined, and the change in the surface area of AE-ACs was investigated as change of some variables results like activation agent, impregnation ratio, temperature, and activation time. The maximum surface area of 968 m2/g and total pore volume of 0.51 cm3/g were attained at 1:2 impregnation ratio, activation time of 110 min, and activation temperature of 800 °C, under N2 atmosphere. A mixture of BTEX pollutants was employed to consider the effect of humidity (0.5, 1, 1.5, and 2 wt%) and initial concentrations (from 5 to 300 mg/m3), using a contact time of 120 min at the temperature of 25 °C. Under the studied conditions, the multi-component and single-component BTEX adsorption capacities by HCl-activated carbon, AE-ACH, were specifically achieved to 6.86-51.36 mg/g and 22-93.62 mg/g, respectively. Overall, Abelmoschus esculentus L. was exploited for the synthesis of AE-ACH which was successfully utilized for efficient BTEX capture from a polluted air stream.


Asunto(s)
Abelmoschus , Contaminantes Atmosféricos , Contaminantes Ambientales , Humanos , Benceno/análisis , Xilenos/análisis , Tolueno , Adsorción , Derivados del Benceno/análisis
9.
Bull Environ Contam Toxicol ; 110(4): 78, 2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37031451

RESUMEN

Road dust is an environmental pollution indicator created by human activities for urban land use. This study aimed to determine the spatial distribution pattern and degree of trace metals in road dust samples collected from 5 different areas in Samsun city center. The trace metals of Mn, Co, Cd, Cr, Cu, Ni, Pb, and Zn are the most examined contaminants in road dust because their hot-spot areas were mainly associated with high traffic density. Factors governing potential contamination index range values of Co, Cr, and Ni were 0.34-0.62, 0.23-0.78, and 0.24-0.48 as the lowest contamination. However, potential contamination index values of Cu, Pb, and Zn in the main road site were 1.80, 2.32, and 2.84 suggesting that relatively high values were uncontaminated to moderately. Pollution assessment methods were applied to toxic metals and revealed that Samsun city had been affected as uncontaminated to moderately contaminated by anthropogenic emission of heavy metals.


Asunto(s)
Metales Pesados , Oligoelementos , Humanos , Monitoreo del Ambiente/métodos , Plomo , Metales Pesados/análisis , Polvo/análisis , Contaminación Ambiental/análisis , Ciudades , Medición de Riesgo , China
10.
Environ Monit Assess ; 194(10): 687, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982372

RESUMEN

Urban air pollution in cities, among the world's most critical problems, has escalated to such an extent that it threatens human health in many urban centers and causes the death of millions every year. Trace metals are significant among the components of air pollution. Trace metals can endure long without undergoing biodegradation and bioaccumulation in living organisms. Moreover, their concentration in the air increases gradually. Therefore, monitoring metal concentration is extremely important for reliable indicators of environmental pollution. Biomonitoring is an effective method for describing metal concentrations in urban areas. Chromium, manganese, and zinc, selected within the present study, have various adverse effects on plants in high concentrations. Their identification is highly critical for monitoring the pollution level in their regions. This study aimed to determine the Cr, Mn, and Zn concentration changes according to organ, and age in Elaeagnus angustifolia L., Platanus orientalis L., Koelreuteria paniculata Laxm, Ailanthus altissima (Mill.) Swingle, and Cedrus atlantica (Endl.) Manetti ex Carr is 30 years old. The accumulation of metals in the outer bark can be found as follows Zn > Mn > Cr in all species, although Ailanthus altissima (Mill.) Swingle and Platanus orientalis L. can be suitable for biomonitoring tools because concentrations change significantly depending on the airborne metal.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Metales Pesados , Oligoelementos , Adulto , Contaminantes Atmosféricos/análisis , Monitoreo Biológico , Monitoreo del Ambiente/métodos , Humanos , Metales/análisis , Metales Pesados/análisis , Oligoelementos/análisis , Zinc
11.
Environ Sci Pollut Res Int ; 29(44): 66728-66740, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35507228

RESUMEN

Benzene is a primary air pollutant commonly found widespread in the indoor environment. It has always been a research focus on the environment due to the causes of significant human health concerns. It has been widely utilized in the synthesis of solvent production, which can rarely be found in high concentrations in outdoor air or high amounts in indoor air, depending on its sources. It is aimed to remove different initial benzene concentrations (from 5 to 1500 ppm) with the production of activated carbon as an excellent adsorbent with a high surface area to be used in these situations. Lignocellulosic wastes have great potential for activated carbon for their advantages (abundant, recycled, and low-cost materials, etc.). This study aimed to evaluate biowaste material for activated carbon production from Althaea officinalis L. biomass by chemical activation (H2SO4, LiOH, and ZnCl2) at temperatures between 500 and 900 °C. Newly developed powdered activated carbons (Ao-ACs) are also tabulated as Ao-AC1-45 for easy reference. Benzene vapor was collected into Tenax TA® tubes by automatic thermal desorption in conjunction with a capillary gas chromatography-mass spectrometry (TD-GC/MS). The significant surface area and production yield of Ao-ACs were obtained at 1424 m2/g (Ao-AC43) and up to 40.32%, respectively. The maximum gas-phase benzene adsorption capacity was 140 mg/g at 270 min. This research has focused on adsorption gas-phase benzene removal onto Ao-ACs as a low-cost adsorbent from the Althaea officinalis L. biomass. Conspicuously, more study is needed to perform the enhanced adsorption of airborne pollutants capacity with inexpensive activated carbon from waste biomass materials.


Asunto(s)
Contaminantes Atmosféricos , Althaea , Adsorción , Contaminantes Atmosféricos/análisis , Benceno/análisis , Biomasa , Carbón Orgánico/química , Gases/análisis , Humanos , Lignina , Solventes/análisis , Residuos/análisis
12.
Environ Sci Pollut Res Int ; 28(39): 55446-55453, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34132963

RESUMEN

Air pollution is becoming increasingly dangerous which is quite a significant issue of today's world, especially air pollution from heavy metal, whose emission increases with industrial and traffic activities. This is of great importance in terms of environmental pollution and human health. Heavy metals do not deteriorate and disappear easily on earth. They are liable to bioaccumulate within cells in organisms. Most of them demonstrate harmful effects in addition as a result of advanced accumulation, and thus they emerge as toxic and carcinogenic. Therefore, it is of great importance to observe the changes in heavy metal concentrations in the air. One of the most effective techniques for monitoring the change of heavy metal concentrations in the atmosphere is the use of annual rings of trees as biomonitors. In this study, in the annual rings of the Cedrus atlantica Manetti tree cut at the Kastamonu province at the end of 2019, the variation of the concentrations of some of the heavy metals most associated with traffic density was tried to be determined. Within the scope of the study, Cr and Mn concentration in the outer bark and the inner bark was compared with the direction and wood for the variation of heavy metal concentrations. Also, variance analysis and Duncan test were applied and evaluated. As a result of the study, while the highest values in many heavy metals are generally obtained in the outer bark, the transfer of metals in the wood is limited, and some heavy metal concentrations change significantly depending on the direction, especially in the wood. This change is related to the traffic density, so Cedrus atlantica Manetti annual rings are very suitable as biomonitors for air pollution control.


Asunto(s)
Contaminantes Atmosféricos/análisis , Cedrus , Monitoreo Biológico , Cedrus/metabolismo , Humanos
13.
Environ Sci Pollut Res Int ; 26(5): 5122-5130, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30607845

RESUMEN

Trees can be used as good indicators to evaluate the increase in atmospheric heavy metal concentrations. In the last two decades, air pollution in the city of Ankara has rapidly increased with the ever-increasing traffic density. In the present study, the depositions of aluminum (Al), zinc (Zn), copper (Cu), cobalt (Co), iron (Fe), manganese (Mn), chrome (Cr), cadmium (Cd), sodium (Na), calcium (Ca), barium (Ba), phosphor (P), magnesium (Mg), arsenic (As), and boron (B) in the rings of oak trees were analyzed using a GBC Integra XL-SDS-270 ICP-OES device. The study found that heavy metal concentrations in tree rings varied over the past 20 years; furthermore, there was a significant relationship between the heavy metal concentrations in tree rings and the atmospheric heavy metal concentrations. There was an increase in the concentrations of nutritional elements (Na, P, and Mg) in 2010 when there was excessive precipitation. As a result, the concentrations of all elements in the woods of different ages were significantly different at a confidence interval of 95% for As, 99% for Cd, and 99.9% for other elements.


Asunto(s)
Contaminación del Aire/análisis , Biomarcadores Ambientales/efectos de los fármacos , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Quercus/química , Emisiones de Vehículos/análisis , Ciudades , Turquía
14.
Environ Monit Assess ; 190(10): 578, 2018 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30196482

RESUMEN

Annual rings are good indicators for determining the increase in the amount of heavy metals in the atmosphere from past to the present. Air pollution has rapidly increased in Ankara over the past 20 years. In particular, there is a serious increase in the concentration of heavy metals that adversely affect human health. In this study, the accumulation of Al, Zn, Cu, Co, Fe, Mn, Cr, Cd, Na, Ca, Ba, P, Mg, As, and B on Acer platanoides rings has been determined using the GBC Integra XL-SDS-270 ICP-OES instrument. Based on our experimental findings, we determined that the concentration of heavy metals accumulated on the rings over the past 20 years varied and that there was a significant correlation between heavy metal concentration in air and heavy metal accumulation on trees. The main reasons for this increase were an increase in the amount of exhaust emission gases and most importantly the transport of heavy metals by the prevailing winds from heavy industrial plants established after 1990 in Ankara. As a result, when the values were examined, we found that except for Na, all the elements, which showed differences at statistically significant levels, were in considerably high quantities in the bark. On average, the values obtained for bark were 6 times higher than those obtained for wood. In terms of elements that showed statistically significant level of differences, this difference was the lowest in P (1.61 times higher), Mg (2.52 times higher), and B (3.94 times higher) and the highest in Mn (23.87 times higher), Al (22.0 times higher), and Fe (14.27 times higher). In the case of Na, we found that the value obtained for wood was 1.64 times higher than that obtained for bark.


Asunto(s)
Acer/química , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Atmósfera/análisis , Humanos , Árboles/química , Turquía , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA