Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Revista
Intervalo de año de publicación
1.
Cureus ; 16(1): e51574, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38318568

RESUMEN

Thyroid dysfunction is a widespread and complex issue in the field of endocrine disorders. It has a significant impact on multiple physiological systems, particularly on the heart. This review explores the complex interaction between thyroid dysfunction and cardiac dynamics, examining the detailed network of molecular, cellular, and systemic changes that underlie the close connection between these two physiological areas. Thyroid dysfunction, which includes both hyperthyroidism and hypothyroidism, is a common endocrine condition that affects millions of people worldwide. The thyroid hormones thyroxine and triiodothyronine regulate various metabolic activities essential for maintaining cellular balance. Disruptions in thyroid function result in widespread consequences, affecting the cardiovascular system. Thyroid hormones directly impact cardiac muscle cells, controlling their ability to contract, their electrical properties, and their reaction to hypertrophy. Thyroid dysfunction goes beyond the level of individual cells and involves complex interactions among vascular dynamics, neurohormonal control, and endothelial function. These factors all contribute to the development of cardiovascular illness. The impact of thyroid dysfunction on cardiac structure, function, and outcomes is not limited to a one-way pattern. Instead, it involves a dynamic two-way interaction. The manifestations of this condition can vary from minor changes in the electrical activity of the heart to more obvious structural abnormalities, such as an increase in the size of the heart muscle and a decrease in its ability to relax during the filling phase. Furthermore, the correlation between thyroid dysfunction and adverse cardiovascular outcomes, such as heart failure and arrhythmias, highlights the clinical importance of this connection. This review provides a complete overview of the relationship between thyroid dysfunction and cardiac dynamics by analyzing a wide range of research from clinical, molecular, and epidemiological perspectives. This study seeks to enhance our comprehension of the comprehensive effects of thyroid dysfunction on the anatomy and function of the heart by explaining the complex molecular mechanisms and systemic consequences. The goal is to establish a basis for informed clinical treatment and future research efforts.

2.
Cureus ; 15(12): e51395, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38292957

RESUMEN

The increasing worldwide prevalence of cardiovascular diseases (CVDs) highlights the need to understand the complex relationships between lipid abnormalities and elevated cardiovascular risk. This review thoroughly investigates the complex terrain of lipid abnormalities, highlighting their crucial significance in developing CVDs. Dyslipidemia, which is closely connected to atherosclerosis, is a significant risk factor for CVDs, including coronary artery disease, myocardial infarction, and stroke. This review thoroughly examines the intricate relationship between lipoproteins, cholesterol metabolism, and the inflammatory cascade, providing a detailed comprehension of the mechanisms that contribute to atherogenic processes. An extensive analysis of the occurrence and distribution of lipid diseases worldwide indicates a concerning high frequency, which calls for a reassessment of public health approaches. Dyslipidemia is caused by a combination of genetic predispositions, lifestyle factors, and metabolic abnormalities, as supported by significant data. Moreover, investigating different types of lipoproteins and their specific functions in the development of atherosclerosis provides insight into the complex causes of CVDs. In addition to conventional lipid profiles, newly identified biomarkers and advanced imaging techniques are being carefully examined for their ability to improve risk classification and treatment strategies' effectiveness. From a critical perspective, the review thoroughly examines the current state of lipid-modifying medicines, specifically statins, fibrates, and new therapeutic approaches. The text discusses the emerging concept of precision medicine, which involves tailoring treatment approaches to individuals based on their genetic and molecular characteristics. This approach has the potential to improve treatment outcomes. In addition, this study critically assesses the effects of lifestyle changes and nutritional interventions on lipid homeostasis, offering a comprehensive view of preventive strategies. This review consolidates current viewpoints on lipid diseases and their complex correlation with cardiovascular risk. This review contributes to the ongoing cardiovascular disease prevention and management dialogue by clarifying the molecular mechanisms, exploring new therapeutic options, and considering broader societal implications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA