Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Parasitol ; 110(3): 186-194, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700436

RESUMEN

Leech specimens of the genus Pontobdella (Hirudinida: Piscicolidae) were found off the coast of the state of Oaxaca (Pacific) as well as in Veracruz and Tabasco (Gulf of Mexico), Mexico. Based on the specimens collected in Oaxaca, a redescription of Pontobdella californiana is provided, with emphasis on the differences in the reproductive organs with the original description of the species. In addition, leech cocoons assigned to P. californiana were found attached to items hauled by gillnets and studied using scanning electron microscopy and molecular approaches. Samples of Pontobdella macrothela were found in both Pacific and Atlantic oceans, representing new geographic records. The phylogenetic position of P. californiana is investigated for the first time, and with the addition of Mexican samples of both species, the phylogenetic relationships within Pontobdella are reinvestigated. Parsimony and maximum-likelihood phylogenetic analysis were based on mitochondrial (cytochrome oxidase subunit I [COI] and 12S rRNA) and nuclear (18S rRNA and 28S rRNA) DNA sequences. Based on our results, we confirm the monophyly of Pontobdella and the pantropical distribution of P. macrothela with a new record in the Tropical Eastern Pacific.


Asunto(s)
Sanguijuelas , Microscopía Electrónica de Rastreo , Filogenia , Animales , Sanguijuelas/clasificación , Sanguijuelas/genética , Sanguijuelas/anatomía & histología , México , Microscopía Electrónica de Rastreo/veterinaria , Océano Pacífico , Océano Atlántico , ADN Ribosómico/química , ARN Ribosómico 28S/genética , Enfermedades de los Peces/parasitología , Golfo de México/epidemiología , Complejo IV de Transporte de Electrones/genética , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/veterinaria , ARN Ribosómico 18S/genética , Datos de Secuencia Molecular , Alineación de Secuencia/veterinaria , Funciones de Verosimilitud , Peces/parasitología
2.
J Exp Zool A Ecol Integr Physiol ; 341(5): 563-577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470019

RESUMEN

Future climate change scenarios project that the increase in surface temperatures will affect ocean temperatures, inducing shifts in marine biodiversity. Sea turtles are species that are particularly vulnerable to the effects of climate change because temperature is a factor that influences embryonic development. We collected clutches of olive ridley turtles from a mass-nesting beach in the Mexican Pacific, which were incubated in ex situ conditions. When the hatchlings emerged, we measured the body condition index-which evaluates the weight-length relationship-and swim thrust, both were considered traits associated with fitness, termed "fitness proxies," and evaluated the effects of incubation temperature, maternal effects, and paternity on these fitness proxies. The body condition index was correlated positively and significantly with the arribada month and temperature during the last third of the incubation period but showed an inverse relationship with the maternal effect. While swim thrust was positively correlated with the maternal effect and the arribada month, there was an inverse relationship with incubation temperature during the first third of the period. Paternity, whether single or multiple, did not have a significant effect on either fitness proxies; however, it may have effects on the average fitness of a population of hatchlings. These results underscore the need to expand research on the sublethal effects of high incubation temperatures on the adaptation and survival of sea turtles, particularly in scenarios of rapid climate change.


Asunto(s)
Temperatura , Tortugas , Animales , Tortugas/fisiología , Femenino , México , Masculino , Cambio Climático , Océano Pacífico , Comportamiento de Nidificación/fisiología
3.
Sci Rep ; 12(1): 21408, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496463

RESUMEN

Trioecy is a sexual system that consists of the co-occurrence of females, males and hermaphrodites in a population and is common in plants; however, in animals it is uncommon and poorly understood. In echinoderms, trioecy had never been recorded until now. Frequencies of females, males, and hermaphrodites were evaluated and gametogenic development was histologically characterized in a population of Toxopneustes roseus inhabiting the Mexican Pacific. Trioecy in this population is functional and temporally stable, since the three sexes coexisted in each sampling month. The hermaphrodites presented similar gametogenic development as the females and males and participated during the spawning season, contributing to the population's reproductive process. Trioecy is considered an evolutionarily transitory state, and it is extremely difficult to explain its presence in a species. We hypothesize that continuous ocean warming represents a threat to the survival of this population of T. roseus, since its early developmental stages, which represent a population bottleneck, are more vulnerable to high temperatures than other sea urchins inhabiting the area, while its population density is significantly lower. These conditions generate a strongly stressed environment, which is the determining factor that maintains the stability of trioecy in the species in which it has been studied.


Asunto(s)
Reproducción , Erizos de Mar , Masculino , Animales , Femenino , Densidad de Población , Plantas
4.
Sci Rep ; 12(1): 10089, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710829

RESUMEN

Tropical coastal lagoons are important ecosystems that support high levels of biodiversity and provide several goods and services. Monitoring of benthic biodiversity and detection of harmful or invasive species is crucial, particularly in relation to seasonal and spatial variation of environmental conditions. In this study, eDNA metabarcoding was used in two tropical coastal lagoons, Chacahua (CH) and Corralero (C) (Southern Mexican Pacific), to describe the benthic biodiversity and its spatial-temporal dynamics. The distribution of benthic diversity within the lagoons showed a very particular pattern evidencing a transition from freshwater to seawater. Although the two lagoon systems are similar in terms of the species composition of metazoans and microeukaryotes, our findings indicate that they are different in taxa richness and structure, resulting in regional partitioning of the diversity with salinity as the driving factor of community composition in CH. Harmful, invasive, non-indigenous species, bioindicators and species of commercial importance were detected, demonstrating the reach of this technique for biodiversity monitoring along with the continued efforts of building species reference libraries.


Asunto(s)
ADN Ambiental , Eucariontes , Biodiversidad , Código de Barras del ADN Taxonómico , ADN Ambiental/genética , Ecosistema , Monitoreo del Ambiente/métodos , Eucariontes/genética , Agua de Mar
5.
Rev. biol. trop ; 67oct. 2019.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1507472

RESUMEN

Introduction: The sipunculans are a group of marine invertebrates that have been little studied in the tropical eastern Pacific (TEP). Antillesoma antillarum is a species belonging to the monospecific family Antillesomatidae, considered widely distributed in tropical and subtropical localities across the globe. Objective: The main objective of this work was to examine the morphological and molecular differences between specimens from both coasts of tropical America to clarify the taxonomy of this species. Methods: We examined the morphology with material from the Mexican Caribbean and southern Mexican Pacific. To perform molecular analyses, two sequences of the COI molecular marker were obtained from specimens collected in Panteón Beach, Oaxaca, southern Mexican Pacific, and compared with four sequences identified as A. antillarum in GenBank, all of them from different localities. A phylogenetic reconstruction was performed with the maximum likelihood method and genetic distances were calculated with the Kimura 2P model and compared to reference values. Results: The phylogenetic analysis revealed three different lineages of Antillesoma that are well supported by bootstrap values: Antillesoma antillarum sensu stricto from the Caribbean Sea and Florida; a sister group to the one represented by our samples from the Mexican Pacific; and a third group from Thailand. Conclusion: Based on morphological traits and molecular data, Antillesoma mexicanum sp. nov. is described from the Mexican Pacific, differing from A. antillarum in the trunk papillae, color patterns and, additionally, the specimens from the Caribbean attain significantly bigger trunk sizes than the ones Pacific.


Introducción: Los sipúnculos son un grupo de gusanos marinos sin segmentación poco estudiados en el Pacífico oriental tropical (POT). Antillesoma antillarum es una especie perteneciente a la familia monoespecífica Antillesomatidae la cual se consideraba que se distribuía ampliamente en distintas localidades tropicales y subtropicales del mundo. Objetivo: El objetivo principal del trabajo fue examinar las diferencias morfológicas y moleculares entre ejemplares de ambas costas de América. Métodos: Para el análisis morfológico se revisó material del Caribe mexicano y del Pacífico sur de México. Para los análisis moleculares se obtuvieron secuencias del marcador mitocondrial COI de ejemplares de A. mexicanum sp. nov. de la playa de Panteón en Puerto Ángel, Oaxaca del Pacífico sur de México; también se incluyeron cuatro secuencias de GenBank de A. antillarum de diferentes localidades para la comparación filogenética con el método de Máxima Verosimilitud. Se calcularon las distancias genéticas con el modelo Kimura 2P y fueron comparadas con valores de referencia. Resultados: El análisis filogenético evidenció tres linajes diferentes: Antillesoma antillarum sensu stricto del Mar Caribe y Florida, el grupo hermano representado por nuestra recolecta en el Pacífico mexicano y un tercer grupo de Tailandia. Conclusión: Basados en datos morfológicos y moleculares, Antillesoma mexicanum sp. nov. fue descrita para el Pacífico mexicano, que difiere de A. antillarum en las papilas del tronco, el patrón de coloración y, adicionalmente, los ejemplares del Caribe fueron significativamente más grandes que los del Pacífico mexicano.

6.
J Hered ; 110(6): 662-674, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31211393

RESUMEN

Oscillations in the Earth's temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900-26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations.


Asunto(s)
Delfín Mular , Ecosistema , Animales , Biodiversidad , Delfín Mular/clasificación , Delfín Mular/genética , ADN Mitocondrial , Variación Genética , Genética de Población , Modelos Teóricos , Filogenia , Filogeografía , Densidad de Población , Análisis de Secuencia de ADN
7.
Ecol Evol ; 9(1): 533-544, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680134

RESUMEN

Understanding the drivers underlying fluctuations in the size of animal populations is central to ecology, conservation biology, and wildlife management. Reliable estimates of survival probabilities are key to population viability assessments, and patterns of variation in survival can help inferring the causal factors behind detected changes in population size. We investigated whether variation in age- and sex-specific survival probabilities could help explain the increasing trend in population size detected in a small, discrete population of bottlenose dolphins Tursiops truncatus off the east coast of Scotland. To estimate annual survival probabilities, we applied capture-recapture models to photoidentification data collected from 1989 to 2015. We used robust design models accounting for temporary emigration to estimate juvenile and adult survival, multistate models to estimate sex-specific survival, and age models to estimate calf survival. We found strong support for an increase in juvenile/adult annual survival from 93.1% to 96.0% over the study period, most likely caused by a change in juvenile survival. Examination of sex-specific variation showed weaker support for this trend being a result of increasing female survival, which was overall higher than for males and animals of unknown sex. Calf survival was lower in the first than second year; a bias in estimating third-year survival will likely exist in similar studies. There was some support first-born calf survival being lower than for calves born subsequently. Coastal marine mammal populations are subject to the impacts of environmental change, increasing anthropogenic disturbance and the effects of management measures. Survival estimates are essential to improve our understanding of population dynamics and help predict how future pressures may impact populations, but obtaining robust information on the life history of long-lived species is challenging. Our study illustrates how knowledge of survival can be increased by applying a robust analytical framework to photoidentification data.

8.
PLoS One ; 12(12): e0189370, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236757

RESUMEN

The current conservation status of the bottlenose dolphin (Tursiops truncatus) under the IUCN is 'least concern'. However, in the Caribbean, small and localized populations of the 'inshore form' may be at higher risk of extinction than the 'worldwide distributed form' due to a combination of factors including small population size, high site fidelity, genetic isolation, and range overlap with human activities. Here, we study the population genetic structure of bottlenose dolphins from the Archipelago of Bocas del Toro in Panama. This is a small population characterized by high site fidelity and is currently heavily-impacted by the local dolphin-watching industry. We collected skin tissue samples from 25 dolphins to study the genetic diversity and structure of this population. We amplified a portion of the mitochondrial Control Region (mtDNA-CR) and nine microsatellite loci. The mtDNA-CR analyses revealed that dolphins in Bocas del Toro belong to the 'inshore form', grouped with the Bahamas-Colombia-Cuba-Mexico population unit. They also possess a unique haplotype new for the Caribbean. The microsatellite data indicated that the Bocas del Toro dolphin population is highly structured, likely due to restricted movement patterns. Previous abundance estimates obtained with mark-recapture methods reported a small population of 80 dolphins (95% CI = 72-87), which is similar to the contemporary effective population size estimated in this study (Ne = 73 individuals; CI = 18.0 - ∞; 0.05). The combination of small population size, high degree of genetic isolation, and intense daily interactions with dolphin-watching boats puts the Bocas del Toro dolphin to at high risk of extinction. Despite national guidelines to regulate the dolphin-watching industry in Bocas del Toro and ongoing educational programs for tour operators, only in 2012 seven animals have died due to boat collisions. Our results suggest that the conservation status of bottlenose dolphins in Bocas del Toro should be elevated to 'endangered' at the national level, as a precautionary measure while population and viability estimates are conducted.


Asunto(s)
Delfín Mular/genética , ADN Mitocondrial/genética , Variación Genética , Animales , Especies en Peligro de Extinción , Repeticiones de Microsatélite/genética , Panamá
9.
J Hered ; 106(4): 355-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26058883

RESUMEN

The population genetic structure of 251 bonnethead sharks, Sphyrna tiburo, from estuarine and nearshore ocean waters of the Western North Atlantic Ocean (WNA), was assessed using sequences of the mitochondrial DNA-control region. Highly significant genetic differences were observed among bonnetheads from 3 WNA regions; Atlantic coast of Florida, Gulf coast of Florida, and southwestern Gulf of Mexico (analysis of molecular variance, ΦCT = 0.137; P=0.001). Within the Gulf coast of Florida region, small but significant genetic differences were observed between bonnetheads from neighboring estuaries. These overall patterns were consistent with known latitudinal and inshore-offshore movements that occur seasonally for this species within US waters, and with the residency patterns and high site fidelity to feeding/nursery grounds reported in estuaries along the Atlantic coast of Florida and South Carolina. Historical demography also supported the occurrence of past population expansions occurring during Pleistocene glacial-interglacial cycles that caused drastic reductions in bonnethead population size, as a consequence of the eustatic processes that affected the Florida peninsula. This is the first population genetics study for bonnetheads to report genetic divergence among core abundance areas in US and Mexican waters of the WNA. These results, coupled with recent advances in knowledge regarding regional differences in life-history parameters of this species, are critical for defining management units to guide future management strategies for bonnetheads within US waters and across international boundaries into Mexico.


Asunto(s)
ADN Mitocondrial/genética , Genética de Población , Tiburones/genética , Animales , Océano Atlántico , Conservación de los Recursos Naturales , Estuarios , Florida , Variación Genética , Golfo de México , Haplotipos , Filogenia , Análisis de Secuencia de ADN
10.
PeerJ ; 2: e420, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25024904

RESUMEN

Populations of species occupying large geographic ranges are often phenotypically diverse as a consequence of variation in selective pressures and drift. This applies to attributes involved in mate choice, particularly when both geographic range and breeding biology overlap between related species. This condition may lead to interference of mating signals, which would in turn promote reproductive character displacement (RCD). We investigated whether variation in the advertisement call of the mountain treefrog (Hyla eximia) is linked to geographic distribution with respect to major Mexican river basins (Panuco, Lerma, Balsas and Magdalena), or to coexistence with its sister (the canyon treefrog, Hyla arenicolor) or another related species (the dwarf treefrog, Tlalocohyla smithii). We also evaluated whether call divergence across the main river basins could be linked to genetic structure. We found that the multidimensional acoustic space of calls from two basins where H. eximia currently interacts with T. smithii, was different from the acoustic space of calls from H. eximia elsewhere. Individuals from these two basins were also distinguishable from the rest by both the phylogeny inferred from mitochondrial sequences, and the genetic structure inferred from nuclear markers. The discordant divergence of H. eximia advertisement calls in the two separate basins where its geographic range overlaps that of T. smithii can be interpreted as the result of two independent events of RCD, presumably as a consequence of acoustic interference in the breeding choruses, although more data are required to evaluate this possibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA