Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Luminescence ; 38(7): 1358-1367, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36657955

RESUMEN

Polypropylene textiles have been used in the development of various industrial products, such as automotives, plastic furniture, and medical tools. However, polypropylene resists dyeing due to a deficiency of active staining spots. Here, we developed a new strategy towards new afterglow and photochromic fibres from recycled polypropylene plastics using plasma-supported coloration with rare-earth activated aluminate nanoparticles (REANPs). Plasma curing was used to generate active dyeing sites on the polypropylene surface. A thin film of REANPs (2-10 nm) was deposited onto the plasma-pretreated polypropylene surface. Various analytical techniques were applied to inspect the morphology of the REANP-finished polypropylene fibres. The polypropylene dyeing activity was much improved after being exposed to plasma. Both photoluminescence analysis and Commission internationale de l'éclairage (CIE) laboratory coordinates proved that the polypropylene fibres exhibited a white colour in daylight and green in ultraviolet light. The thin afterglow layer immobilized onto the polypropylene surface exhibited an emission band of 524 nm upon excitation at 365 nm. The sliding angles dropped from 12° to 9°, but the contacting angles increased from 139.4° to 145.0° when the REANP ratio was raised. These findings show that REANP-finished polypropylene had good colourfastness, antimicrobial activity, and ultraviolet light blocking. Both stiffness and permeability to air of REANP-finished polypropylene were explored to designate excellent comfort characteristics.


Asunto(s)
Nanopartículas , Plásticos , Polipropilenos , Rayos Ultravioleta
2.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616469

RESUMEN

A transparent smart window made of recycled polycarbonate plastic (PCP) waste was prepared and immobilized with strontium aluminate phosphor nanoparticles (SAPN). It has afterglow emission, super-hydrophobicity, durability, photostability, good mechanical properties, ultraviolet protection, and high optical transmittance. To create an afterglow emission polycarbonate smart window (SAPN@PCP), recycled polycarbonate waste was integrated with various concentrations of SAPN (15-52 nm). SAP micro-scale powder was made using the solid-state high temperature method. The SAP nanoparticles were produced using the top-down method. To create a colorless plastic bulk, recycled polycarbonate waste was inserted into a hot bath. This colorless plastic was thoroughly combined with SAPN and cast to create an afterglow luminous smart window. To investigate its photoluminescence properties, spectrum profiles of excitation and emission were measured. According to the luminescence parameters, the phosphorescent colorless polycarbonate plates displayed a change in color to strong green under UV illumination and greenish-yellow in a dark box. The afterglow polycarbonate smart window displayed two emission peaks at 496 and 526 nm, and an absorption wavelength of 373 nm. Upon increasing the SAPN ratio, the hydrophobic activity, hardness, photostability, and UV protection were improved. Luminescent polycarbonate substrates with lower SAPN ratio demonstrated rapid and reversible fluorescence under UV light, while the higher SAPN content in the luminous polycarbonate substrates showed afterglow.

3.
Polymers (Basel) ; 12(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498350

RESUMEN

Asphaltenes are heavy petroleum crude oil components which limit the production of petroleum crude oil due to their aggregation and their stabilization for all petroleum crude oil water emulsions. The present study aimed to modify the chemical structures of isolated asphaltenes by converting them into amphiphilic polymers containing ionic liquid moieties (PILs) to demulsify the emulsion and replace the asphaltene layers surrounding the oil or water droplets in petroleum crude oil emulsions. The literature survey indicated that no modification occurred to produce the PILs from the asphaltenes. In this respect, the asphaltenes were modified via oxidation of the lower aliphatic chain through carboxylation followed by conversion to asphaltene acid chloride that reacted with ethoxylated N-alkyl pyridinium derivatives. Moreover, the carboxylation of asphaltenes was carried out through the Diels-Alder reaction with maleic anhydride that was linked with ethoxylated N-alkyl pyridinium derivatives to produce amphiphilic asphaltene PILs. The produced PILs from asphaltenes acid chloride and maleic anhydride were designated as AIL and AIL-2. The chemical structure and thermal stability of the polymeric asphaltene ionic liquids were evaluated. The modified structure of asphaltenes AIL and AIL-2 exhibited different thermal characteristics involving glass transition temperatures (Tg) at -68 °C and -45 °C, respectively. The new asphaltenes ionic liquids were adsorbed at the asphaltenes surfaces to demulsify the heavy petroleum crude emulsions. The demulsification data indicated that the mixing of AIL and AIL-2 100 at different ratios with ethoxylated N-alkyl pyridinium were demulsified with 100% of the water from different compositions of O:W emulsions 50:50, 90:10, and 10:90. The demulsification times for the 50:50, 90:10, and 10:90 O:W emulsions were 120, 120, and 60 min, respectively. The interaction of the PILs with asphaltene and mechanism of demulsification was also investigated.

4.
Phytochemistry ; 143: 180-185, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28822320

RESUMEN

Three previously undescribed compounds, maneonenes and isomaneonene derivatives; in addition to five known compounds, two cuparene, one chamigrene, and two cis-maneonenes were isolated from the Red Sea red alga Laurencia obtusa. The chemical structures of all unknown metabolites were characterized employing spectroscopic methods and then were further confirmed by single crystal X-ray analysis. Jeddahenyne A has C-5-C-12 etheric linkage and C-13-C-14 carbon-carbon double bond; Jeddahenyne B has in addition to the aforementioned etheric linkage a C-13 carbonyl function and absence of halogenation, unusual features for the maneonenes while 12-debromo-12-methoxy isomaneonene A shows unrecorded methoxylation at C-12. The apoptosis-inducing or inhibiting effect of both compounds on apoptosis of peripheral blood neutrophils was studied.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Laurencia/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Estructura Molecular , Neutrófilos/efectos de los fármacos , Resonancia Magnética Nuclear Biomolecular , Sesquiterpenos/química
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1857-68, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25467680

RESUMEN

New N-methyl-C-2,4,6-trimethylphenylnitrone 1 has been synthesized starting from N-methylhydroxylamine and mesitaldehyde. The product was fully characterized using different spectroscopic techniques; FTIR, NMR, UV-Vis, high resolution mass spectrometry and X-ray diffraction. The relative stability and percent of population of its two possible isomers (E and Z) were calculated using the B3LYP/6-311++G(d,p) method in gas phase and in solution. In agreement with the X-ray results, it was found that Z-isomer is the most stable one in both gas phase and solution. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO), and chemical shift values were also calculated using the same level of theory. The TD-DFT results of the studied nitrone predicted a π-π(∗) transition band at 285.1nm (fosc=0.3543) in the gas phase. The rest of the spectral bands undergo either hyperchromic or hypsochromic shifts in the presence of solvent. Polarizability and HOMO-LUMO gap values were used to predict the nonlinear optical properties (NLO) of the studied compound. NBO analysis has been used to determine the most accurate Lewis structure of the studied molecule.

6.
BMC Biochem ; 15: 15, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25065975

RESUMEN

BACKGROUND: Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). RESULTS: The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, Km and Vmax, were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, Ea, and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. CONCLUSIONS: Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants.


Asunto(s)
Bioquímica/métodos , Pisum sativum/enzimología , Proteínas de Plantas/aislamiento & purificación , Urea/metabolismo , Ureasa/aislamiento & purificación , Resinas Acrílicas , Precipitación Química , Cromatografía DEAE-Celulosa , Cromatografía en Gel , Germinación , Hidrólisis , Peso Molecular , Extractos Vegetales , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Semillas , Termodinámica , Ureasa/química , Ureasa/metabolismo
7.
ScientificWorldJournal ; 2014: 806252, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24982998

RESUMEN

Adsorption of Cd(2+) on two types of Egyptian soils: clay (alluvial) and sandy loam (calcareous), was studied. Effect of changing the matrix electrolyte type and concentration was used to mimic the natural soil salts. Kinetics and thermodynamic parameters of the adsorption were calculated at two different electrolyte concentrations: 0.05 N and 0.15 N. The adsorption was described by Langmuir and Freundlich isotherms. Results showed that lower concentration of the NaCl or Na2SO4 electrolytes (0.05 N) had higher adsorption capacity. Also, the maximum adsorption of cadmium when using sulfate counter ion is about two to three times higher than that when using chloride (544 µg/g for alluvial soil and 170 µg/g for calcareous soil when using 0.05 N). Using NaCl as matrix electrolyte, Freundlich isotherms showed bi-linear fits that probably mean a two energy level adsorption. This might be explained by either the competition of Cd(2+) with Na(+) or its complexation with Cl(-).


Asunto(s)
Silicatos de Aluminio/química , Cadmio/química , Cloruros/química , Iones , Dióxido de Silicio/química , Suelo/química , Sulfatos/química , Adsorción , Arcilla , Cinética , Temperatura
8.
Anal Chem ; 85(9): 4259-62, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23560736

RESUMEN

We apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to provide an in situ lipidomic profile of genetically modified tissues from a conditional transgenic mouse model of MYC-induced hepatocellular carcinoma (HCC). This unique, label-free approach of combining DESI-MSI with the ability to turn specific genes on and off has led to the discovery of highly specific lipid molecules associated with MYC-induced tumor onset. We are able to distinguish normal from MYC-induced malignant cells. Our approach provides a strategy to define a precise molecular picture at a resolution of about 200 µm that may be useful in identifying lipid molecules that define how the MYC oncogene initiates and maintains tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Metabolismo de los Lípidos/genética , Lípidos/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/genética , Espectrometría de Masa por Ionización de Electrospray
9.
Rapid Commun Mass Spectrom ; 26(17): 1985-92, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22847697

RESUMEN

RATIONALE: Polycyclic aromatic hydrocarbons (PAHs) are nonpolar and difficult to detect by desorption electrospray ionization. We present a new detection method based on cationization with silver ions, which has the added advantage of being able to differentiate PAHs with the same mass but different structure. METHODS: 9,10-Diphenylanthracene and triptycene, in addition to four different groups of PAH isomers: (1) anthracene and phenanthrene, (2) pyrene and fluoranthene, (3) benz[a]anthracene, benz[b]anthracene (tetracene), and chrysene (4) benzo[a]pyrene and benzo[k]fluoranthene, were deposited on a paper surface and bombarded with methanol droplets containing silver nitrate. The resulting microdroplets entered a quadruple mass spectrometer for mass analysis. RESULTS: The mass spectrum shows [PAH](+), [Ag + OH + PAH](+), and [Ag(PAH)(n)](+) (n = 1, 2) (and [PAH + O(2)](+) in the case of benz[b]anthracene) ions. PAHs having a bay structure, such as phenanthrene, showed a different tendency to interact with silver ions from those PAHs having a linear arrangement of the fused benzene rings, such as anthracene. The ratios of the [PAH](+) peak intensity to that of [Ag-PAH](+), [Ag + OH + PAH](+), [Ag(PAH)(2)](+), and [PAH + O(2)](+) were used to differentiate the PAH isomers sharing the same molecular formula with different structures. For isomeric mixtures the [PAH](+) to [Ag + OH + PAH](+) ratio was found to be the most useful parameter. The uncertainty in the mole fraction of an isomeric mixture was ±0.09, ±0.13, ±0.25, and ±0.1 for phenanthrene-anthracene, fluoranthene-pyrene, benz[a]anthracene-chrysene, and benzo[a]pyrene-benzo[k]fluoranthene, respectively. CONCLUSIONS: A simple method has been developed for the detection of PAHs in desorption electrospray ionization mass spectrometry based on Ag(I) cationization. The method showed a capability to differentiate PAHs isomers (having the same molecular mass) in isomeric mixture with an uncertainty in the mole fraction of about ±0.1. At high inlet temperature and voltage, this method showed better sensitivity but less ability to differentiate between isomeric species.

10.
J Phys Chem A ; 115(4): 410-8, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21210692

RESUMEN

A normal-incidence geometry, polarization-resolved cavity ring-down spectroscopy technique (polarized NICRDS) is described to probe the polarized absorbance of surface-adsorbed thin films and short-path length liquid samples. The technique is demonstrated by a kinetic study of the photochromic behavior of the spiropyran dye 6,8-dibromo-1', 3'-dihydro-1', 3', 3'-trimethylspiro[2H-1-benzopyran-2, 2'-(2H)-indole]. The technique is shown potentially to have monolayer coverage sensitivity and can measure the angular orientation distribution of analyte molecules. The photochromic kinetics of 6,8-dibromoBIPS in toluene solution were qualitatively consistent with a previous study of this molecule using conventional absorption spectroscopy. The absorption polarizations and slow ring-closing kinetics measured in a thin poly(methyl methacrylate) film are consistent with a strong interaction of the spiropyran and merocyanine forms with the polymer matrix.

11.
J Phys Chem A ; 115(4): 419-27, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21210693

RESUMEN

The molecule 2-nitro-9-(2,2,2-triphenylethylidene)fluorene (NTEF) was studied as a potential light-driven molecular motor. Absorption at 355 nm causes a reversible spatial reorientation of the angular distribution of the dibenzofulvene rotor moiety of NTEF when immobilized in a poly(methyl methacrylate) (PMMA) matrix adsorbed on a fused silica surface in air at room temperature. The photoreorientation dynamics was probed by polarized normal incidence cavity ringdown spectroscopy (NICRDS) when the matrix was irradiated by linearly polarized "drive" light. Polarized drive irradiation at 355 nm creates a "hole" in the angular distribution of the molecular transition dipoles. Changing the polarization of the drive beam refills the hole, creating a new hole. A stochastic model was fitted to the experimental hole burning measurements to obtain a photoreorientation quantum yield (Φ(reorient) = 0.014). The photoreorientation process appears to be driven by photoisomerization of the exocyclic dibenzofulvene double bond of NTEF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA