Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Arch Med Res ; 54(6): 102860, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499571

RESUMEN

BACKGROUND: Besides its main role in the control of blood cholesterol, PCSK9 has a role in the regulation of neuronal development and apoptosis. We suggest, for the first time, the possible involvement of PCSK9 in autism. METHOD: In this case-control study, Sanger sequencing was used to analyze sequence variations in the PCSK9 gene exons and their flanking intronic sequences. ELISA assay was used to determine the plasma concentration of PCSK9. The methylation percentage of the PCSK9 gene promoter was assessed by methylation-specific PCR (MSP). RESULTS: Forty-three variants were found; out of them, seven showed differential frequency between patients and controls. rs.45448095, rs.45613943, rs.630431, rs.529500286, and rs.45439391 are risk factors for autism, while rs.11800231 and rs.483462 are protective variants. The concentration of plasma PCSK9 protein was significantly elevated and the methylation percentage of PCSK9 gene promoter was significantly lower in cases than in controls (p <0.001 and = 0.002, respectively). ROC curve analysis identified an area under the curve (AUC) of 0.915 for plasma protein concentration and 0.693 for percent gene promoter methylation. In addition, two new variants were identified (g.23809C>T in intron 11 and g.24071T>G in 3' UTR). CONCLUSION: This is the first study to investigate the correlation between PCSK9 protein and autism and suggests the potential involvement of PCSK9 as one of the susceptibility genes for autism. Further studies with a larger number of subjects are recommended.


Asunto(s)
Trastorno Autístico , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/genética , Estudios de Casos y Controles , Metilación , Trastorno Autístico/genética
2.
Eur J Med Genet ; 65(1): 104377, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748996

RESUMEN

Carpenter syndrome 1 (CRPT1) is an acrocephalopolysyndactyly (ACPS) disorder characterized by craniosynostosis, polysyndactyly, obesity, and other malformations. It is caused by mutations in the gene RAB23. We are reporting on two patients from two unrelated consanguineous Egyptian families. Patient 1 presented with an atypical clinical presentation of Carpenter syndrome including overgrowth with advanced bone age, epileptogenic changes on electroencephalogram and autistic features. Patient 2 presented with typical clinical features suggestive of Carpenter syndrome. Therefore, Patient 1 was subjected to whole exome sequencing (WES) to find an explanation for his unusual features and Patient 2 was subjected to Sanger sequencing of the coding exons of theRAB23 gene to confirm the diagnosis. We identified a novel homozygous missense RAB23 variant (NM_001278668:c.T416C:p.Leu139Pro) in Patient 1 and a novel homozygous splicing variant (NM_016277.5:c.398+1G > A) in Patient 2. We suggest that the overgrowth with advanced bone age, electroencephalogram epileptogenic changes, and autistic features seen in Patient 1 are an expansion of the Carpenter phenotype and could be due to the novel missense RAB23 variant. Additionally, the novel identified RAB23 variants in Patient 1 and 2 broaden the spectrum of variants associated with Carpenter syndrome.


Asunto(s)
Acrocefalosindactilia/genética , Proteínas de Unión al GTP rab/genética , Preescolar , Humanos , Masculino , Mutación , Fenotipo , Secuenciación del Exoma
3.
Mol Syndromol ; 12(5): 279-288, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34602954

RESUMEN

Desbuquois dysplasia type 1 (DBQD1) is a very rare skeletal dysplasia characterized by growth retardation, short stature, distinct hand features, and a characteristic radiological monkey wrench appearance at the proximal femur. We report on 2unrelated Egyptian patients having the characteristic features of DBQD1 with different expressivity. Patient 1 presented at the age of 45 days with respiratory distress, short limbs, faltering growth, and distinctive facies while patient 2 presented at 5 years of age with short stature and hypospadias. The 2 patients shared radiological features suggestive of DBQD1. Whole-exome sequencing revealed a homozygous frameshift mutation in the CANT1 gene (NM_001159772.1:c.277_278delCT; p.Leu93ValfsTer89) in patient 1 and a homozygous missense mutation (NM_138793.4:c.898C>T; p.Arg300Cys) in patient 2. Phenotypic variability and variable expressivity of DBQD was evident in our patients. Hypoplastic scrotum and hypospadias were additional unreported associated findings, thus expanding the phenotypic spectrum of the disorder. We reviewed the main features of skeletal dysplasias exhibiting similar radiological manifestations for differential diagnosis. We suggest that the variable severity in both patients could be due to the nature of the CANT1 gene mutations which necessitates the molecular study of more cases for phenotype-genotype correlations.

4.
Mol Genet Genomic Med ; 9(2): e1546, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217222

RESUMEN

BACKGROUND: Wolf-Hirschhorn syndrome (WHS) (OMIM 194190) is a multiple congenital anomalies/intellectual disability syndrome. It is caused by partial loss of genetic material from the distal portion of the short arm of chromosome. METHODS: We studied the phenotype-genotype correlation. RESULTS: We present the clinical manifestations and cytogenetic results of 10 unrelated Egyptian patients with 4p deletions. Karyotyping, FISH and MLPA was performed for screening for microdeletion syndromes. Array CGH was done for two patients. All patients exhibited the cardinal clinical manifestation of WHS. FISH proved deletion of the specific WHS locus in all patients. MLPA detected microdeletion of the specific locus in two patients with normal karyotypes, while array CGH, performed for two patients, has delineated the extent of the deleted segments and the involved genes. LETM1, the main candidate gene for the seizure phenotype, was found deleted in the two patients tested by array CGH; nevertheless, one of them did not manifest seizures. The study emphasized the previous. CONCLUSION: WHS is a contiguous gene syndrome resulting from hemizygosity of the terminal 2 Mb of 4p16.3 region. The Branchial fistula, detected in one of our patients is a new finding that, to our knowledge, was not reported.


Asunto(s)
Genotipo , Fenotipo , Síndrome de Wolf-Hirschhorn/genética , Proteínas de Unión al Calcio/genética , Niño , Preescolar , Hibridación Genómica Comparativa , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Cariotipificación , Masculino , Proteínas de la Membrana/genética , Síndrome de Wolf-Hirschhorn/patología
5.
Neurol Sci ; 42(7): 2737-2745, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33123925

RESUMEN

At least 14 distinctive PEX genes function in the biogenesis of peroxisomes. Biallelic alterations in the peroxisomal biogenesis factor 12 (PEX12) gene lead to Zellweger syndrome spectrum (ZSS) with variable clinical expressivity ranging from early lethality to mildly affected with long-term survival. Herein, we define 20 patients derived from 14 unrelated Egyptian families, 19 of which show a homozygous PEX12 in-frame (c.1047_1049del p.(Gln349del)) deletion. This founder mutation, reported rarely outside of Egypt, was associated with a uniformly severe phenotype. Patients showed developmental delay in early life followed by motor and mental regression, progressive hypotonia, unsteadiness, and lack of speech. Seventeen patients had sparse hair or partial alopecia, a striking feature that was not noted previously in PEX12. Neonatal cholestasis was manifested in 2 siblings. Neurodiagnostics showed consistent cerebellar atrophy and variable white matter demyelination, axonal neuropathy in about half, and cardiomyopathy in 10% of patients. A single patient with a compound heterozygous PEX12 mutation exhibited milder features with late childhood onset with gait disturbance and learning disability. Thus, the PEX12 relatively common founder mutation accounts for the majority of PEX12-related disease in Egypt and delineates a uniform clinical and radiographic phenotype.


Asunto(s)
Proteínas de la Membrana/genética , Trastorno Peroxisomal , Síndrome de Zellweger , Niño , Egipto , Efecto Fundador , Humanos , Recién Nacido , Mutación , Trastorno Peroxisomal/diagnóstico por imagen , Trastorno Peroxisomal/genética
6.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33058759

RESUMEN

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Asunto(s)
Anomalías Múltiples/genética , Disfunción Cognitiva/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Dedos/anomalías , Mutación de Línea Germinal , Defectos de los Tabiques Cardíacos/genética , Polidactilia/genética , Dedos del Pie/anomalías , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Adolescente , Adulto , Animales , Secuencia de Bases , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/deficiencia , Femenino , Dedos/patología , Regulación del Desarrollo de la Expresión Génica , Defectos de los Tabiques Cardíacos/diagnóstico , Defectos de los Tabiques Cardíacos/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoenzimas/química , Holoenzimas/deficiencia , Holoenzimas/genética , Humanos , Recién Nacido , Masculino , Ratones , Modelos Moleculares , Mosaicismo , Células 3T3 NIH , Linaje , Polidactilia/diagnóstico , Polidactilia/patología , Estructura Secundaria de Proteína , Dedos del Pie/patología
7.
Am J Med Genet A ; 182(12): 2857-2866, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949109

RESUMEN

Blepharophimosis-ptosis-intellectual disability syndrome (BPID) is an extremely rare recognizable blepharophimosis intellectual disability syndrome (BID). It is caused by biallelic variants in the UBE3B gene with only 24 patients described worldwide. Herein, we report on the clinical, brain imaging and molecular findings of additional nine patients from six unrelated Egyptian families. Patients presented with the characteristic features of the syndrome including blepharophimosis, ptosis, upslanted palpebral fissures with epicanthic folds, hypertelorism, long philtrum, high arched palate, micrognathia, microcephaly, and intellectual disability. Other findings were congenital heart disease (5 patients), talipes equinovarus (5 patients), genital anomalies (5 patients), autistic features (4 patients), cleft palate (2 patients), hearing loss (2 patients), and renal anomalies (1 patient). New or rarely reported findings were spherophakia, subvalvular aortic stenosis and hypoplastic nails, and terminal phalanges. Brain MRI, performed for 7 patients, showed hypogenesis or almost complete agenesis of corpus callosum. Genetic studies revealed five novel homozygous UBE3B variants. Of them, the c.1076G>A (p.W359*) was found in three patients from two unrelated families who shared similar haplotype suggesting a likely founder effect. Our results strengthen the clinical, dysmorphic, and brain imaging characteristic of this unique type of BID and extend the mutational spectrum associated with the disorder.


Asunto(s)
Blefarofimosis/genética , Homocigoto , Discapacidad Intelectual/genética , Mutación , Fenotipo , Anomalías Cutáneas/genética , Ubiquitina-Proteína Ligasas/genética , Anomalías Urogenitales/genética , Blefarofimosis/patología , Niño , Preescolar , Egipto , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Masculino , Linaje , Anomalías Cutáneas/patología , Anomalías Urogenitales/patología
8.
Am J Med Genet A ; 182(6): 1407-1420, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32267100

RESUMEN

PCNT encodes a large coiled- protein localizing to pericentriolar material and is associated with microcephalic osteodysplastic primordial dwarfism type II syndrome (MOPD II). We report our experience of nine new patients from seven unrelated consanguineous Egyptian families with the distinctive clinical features of MOPD II in whom a customized NGS panel showed homozygous truncating variants of PCNT. The NGS panel results were validated thereafter using Sanger sequencing revealing three previously reported and three novel PCNT pathogenic variants. The core phenotype appeared homogeneous to what had been reported before although patients differed in the severity showing inter and intra familial variability. The orodental pattern showed atrophic alveolar ridge (five patients), rootless tooth (four patients), tooth agenesis (three patients), and malformed tooth (three patients). In addition, mesiodens was a novel finding found in one patient. The novel c.9394-1G>T variant was found in two sibs who had tooth agenesis. CNS anomalies with possible vascular sequelae were documented in two male patients (22.2%). Simplified gyral pattern with poor development of the frontal horns of lateral ventricles was seen in four patients and mild thinning of the corpus callosum in two patients. Unilateral coronal craniosynstosis was noted in one patient and thick but short corpus callosum was an unusual finding noted in another. The later has not been reported before. Our results refine the clinical, neuroradiological, and orodental features and expand the molecular spectrum of MOPD II.


Asunto(s)
Antígenos/genética , Enanismo/epidemiología , Enanismo/genética , Retardo del Crecimiento Fetal/epidemiología , Retardo del Crecimiento Fetal/genética , Predisposición Genética a la Enfermedad , Microcefalia/epidemiología , Microcefalia/genética , Osteocondrodisplasias/epidemiología , Osteocondrodisplasias/genética , Adolescente , Niño , Preescolar , Consanguinidad , Enanismo/complicaciones , Enanismo/patología , Egipto/epidemiología , Femenino , Retardo del Crecimiento Fetal/patología , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Mutación , Osteocondrodisplasias/complicaciones , Osteocondrodisplasias/patología , Fenotipo , Hermanos
9.
Behav Brain Res ; 378: 112272, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31586564

RESUMEN

Catechol-O-methyltransferase (COMT) enzyme has a major role in the adjustment of catechol-dependent functions, for example, cognition, cardiac function, and pain processing. The pathogenesis of autism may be related to dysfunction in the midbrain dopaminergic system. Therefore, we aimed to clarify how COMT gene variants affect dopamine level, and its potential impact on phenotype traits of autistic patients. 52 autistic patients were subjected to comprehensive clinical investigation, sequencing of exon 4 of the COMT gene by direct Sanger Sequencing, and measuring of dopamine levels. The clinical presentations of autistic subjects were correlated with detected COMT variants and dopamine level. Our molecular results revealed that three COMT variants were found: rs8192488 [C > T], rs4680 (Val158Met) and rs4818 [C > G]. Within autistic subjects, Val158Met rs4680 carriers were significantly distributed (71.2% P = 0.014) accompanied with abnormal dopamine, abnormal Electroencephalogram (EEG) and increasing the severity of autistic behaviour. As regards the haplotypes, CC/VM/CG block was significantly distributed among the autistic subjects (30.8%) presented with low mean dopamine level (15.8 ±â€¯4.7 pg/ml, p = 0.05), while CC/MM/CC were presented with high mean level (77.8 ±â€¯8.6 pg/ml, p = 0.05). Evidence is currently limited and preliminary, further studies are necessary in order to set up a coherent dopaminergic model of Autism Spectrum Disorder (ASD), which would further pave the way for an adequate treatment.


Asunto(s)
Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Catecol O-Metiltransferasa/genética , Dopamina/sangre , Adolescente , Niño , Preescolar , Electroencefalografía , Femenino , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad
10.
Front Genet ; 11: 580484, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33456446

RESUMEN

There is a growing interest in standardizing gene-disease associations for the purpose of facilitating the proper classification of variants in the context of Mendelian diseases. One key line of evidence is the independent observation of pathogenic variants in unrelated individuals with similar phenotypes. Here, we expand on our previous effort to exploit the power of autozygosity to produce homozygous pathogenic variants that are otherwise very difficult to encounter in the homozygous state due to their rarity. The identification of such variants in genes with only tentative associations to Mendelian diseases can add to the existing evidence when observed in the context of compatible phenotypes. In this study, we report 20 homozygous variants in 18 genes (ADAMTS18, ARNT2, ASTN1, C3, DMBX1, DUT, GABRB3, GM2A, KIF12, LOXL3, NUP160, PTRHD1, RAP1GDS1, RHOBTB2, SIGMAR1, SPAST, TENM3, and WASHC5) that satisfy the ACMG classification for pathogenic/likely pathogenic if the involved genes had confirmed rather than tentative links to diseases. These variants were selected because they were truncating, founder with compelling segregation or supported by robust functional assays as with the DUT variant that we present its validation using yeast model. Our findings support the previously reported disease associations for these genes and represent a step toward their confirmation.

11.
Arch Dermatol Res ; 311(9): 721-730, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31388754

RESUMEN

Assessment of ten Egyptian patients with Sjögren-Larsson syndrome (SLS) detected; unusual clinical manifestations, a first report of brain atrophy in SLS, some patients exhibited neither retinal dots nor white matter changes previously reported as essential manifestations. We identified five mutations in ALDH3A2 gene including a novel one and suggest a founder effect. Sjögren-Larsson syndrome is a rare autosomal recessive inborn error of lipid metabolism caused by mutations in the ALDH3A2 gene that codes for fatty aldehyde dehydrogenase and result in a triad of ichthyosis, spasticity, and mental retardation. Clinical, radiological, biochemical, and neurophysiological evaluation in ten SLS patients descending from seven unrelated Egyptian pedigrees was followed by Sanger sequencing of ALDH3A2 performed by ABI 3500. All patients presented with SLS triad; ichthyosis, spasticity of four limbs and hyperreflexia with an intelligent quotient (IQ) ranging from (39 to 69). Other manifestations were dysmorphic features, seizures, and skeletal and ophthalmological affection. Mutational analysis of ALDH3A2 gene revealed three missense, one splice site, and one novel stop codon mutation; c.991G>T (p.E331X). Biochemical studies showed decrease of fatty aldehyde dehydrogenase activity. Our results reinforce the distinct clinical, radiological, and biochemical features of ALDH3A2-related SLS which are the clue for targeted molecular testing. Moreover, we present additional unreported clinical findings and a novel mutation thus expanding the phenotypic and mutational spectrum of this rare disorder.


Asunto(s)
Aldehído Oxidorreductasas/genética , Efecto Fundador , Síndrome de Sjögren-Larsson/genética , Adolescente , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Egipto , Femenino , Humanos , Masculino , Mutación , Linaje
12.
Am J Med Genet B Neuropsychiatr Genet ; 180(5): 305-309, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31033224

RESUMEN

BACKGROUND: Autism spectrum disorders (ASD) is a heterogeneous neurodevelopmental disease, various articles reported that dysfunctional folate-methionine pathway enzymes might assume a paramount part in the pathophysiology of autism. Methylene tetrahydrofolate reductase (MTHFR) is a basic catalyst for this pathway, also MTHFR gene C677T variant accounted as a risk factor of autism. OBJECTIVE: The present study aimed to investigate the association of MTHFR gene rs1801133(C677T) variant among Egyptian autistic children. METHODS: The study included 78 autistic children, and 80 matched healthy control children. Full clinical and radiological examinations were conducted. MTHFR genetic variant, rs1801133(C677T) was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods followed by direct sequencing technique. RESULTS: MTHFR (C677T) allele frequency was found to be higher significantly in ASD cases compared with nonautistic children. Also, we had a higher distribution of combined CT + TT genotypes among autistic patients with consanguinity and family history of psychological disease. In Gastrointestinal tract (GIT) and sleep disorders showed a higher distribution of hetero CT genotype as well as combined CT + TT genotypes. CONCLUSION: This study demonstrated a role of MTHFR gene (C667T) variant with the increased risk for ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Alelos , Estudios de Casos y Controles , Niño , Trastornos Generalizados del Desarrollo Infantil/genética , Preescolar , Egipto/epidemiología , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
13.
Am J Med Genet A ; 179(2): 237-242, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30575274

RESUMEN

GAPO syndrome is a very rare disorder characterized by growth retardation, alopecia, pseudoanodontia and progressive optic atrophy. It is caused by biallelic mutations in the ANTXR1 gene. Herein, we describe the clinical and molecular findings of seven new patients with GAPO syndrome. Our patients presented with the characteristic clinical features of the syndrome except for one patient who did not display total alopecia till the age of two years. Strikingly, optic atrophy and glaucoma were observed in all patients and one patient showed keratopathy in addition. Moreover, craniosynstosis was an unusual associated finding in one patient. Mutational analysis of ANTXR1 gene identified five novel homozygous mutations including two frameshift, two splice site and a large intragenic deletion of exon 3. Our results reinforce the clinical characteristics of the syndrome, expand the mutational spectrum and provide more insights into the role of the ANTXR1 protein in the regulation of extracellular matrix.


Asunto(s)
Alopecia/genética , Anodoncia/genética , Trastornos del Crecimiento/genética , Proteínas de Microfilamentos/genética , Atrofias Ópticas Hereditarias/genética , Atrofia Óptica/genética , Receptores de Superficie Celular/genética , Eliminación de Secuencia/genética , Alopecia/patología , Anodoncia/patología , Niño , Preescolar , Femenino , Trastornos del Crecimiento/patología , Homocigoto , Humanos , Lactante , Masculino , Atrofias Ópticas Hereditarias/patología , Atrofia Óptica/patología
14.
Hum Genet ; 137(9): 753-768, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30167850

RESUMEN

NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the "NALCN channelosome", consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families.


Asunto(s)
Proteínas Portadoras/genética , Canalopatías/genética , Discapacidades del Desarrollo/genética , Marcadores Genéticos , Variación Genética , Proteínas de la Membrana/genética , Canales de Sodio/genética , Adolescente , Adulto , Canalopatías/patología , Niño , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Recién Nacido , Canales Iónicos , Masculino , Fenotipo , Adulto Joven
15.
Am J Med Genet A ; 176(11): 2446-2450, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244542

RESUMEN

We report two discordant clinical and imaging features in four male patients from two unrelated families of Egyptian descent with hemizygous pathogenic variants in PQBP1. The three patients of the first family displayed the typical features underlying PQBP1 such as the long triangular face, bulbous nose, hypoplastic malar region, and micrognathia, which were subsequently confirmed using targeted sequence analysis that showed a previously reported nonsense mutation c.586C>T p.R196*. Whole exome sequencing identified a novel missense PQBP1 variant c.530G>A:p.R177H in the second family, in which the index patient presented with intellectual disability and dysmorphic facial features reminiscent of Kabuki-like syndrome and his brain magnetic resonance imaging revealed partial agenesis of corpus callosum, mild vermis, and brainstem hypoplasia. These imaging features are distinct from the previously described with a well-known phenotype that is already known for PQBP1. This report expands the phenotypic spectrum of PQBP1-related disorders and is the second reported missense PQBP1 variant. Further, it highlights the possible role of PQBP1 in hindbrain development.


Asunto(s)
Proteínas Portadoras/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas Nucleares/genética , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Proteínas de Unión al ADN , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Fenotipo
16.
Genet Med ; 20(12): 1609-1616, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29620724

RESUMEN

PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.


Asunto(s)
Exoma/genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Anomalías Musculoesqueléticas/genética , Alelos , Proteínas Sanguíneas/genética , Hidrolasas de Éster Carboxílico , Estudios de Cohortes , Exorribonucleasas/genética , Femenino , Proteínas Fetales/genética , Efecto Fundador , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Anomalías Musculoesqueléticas/clasificación , Anomalías Musculoesqueléticas/patología , Proteínas de Neoplasias/genética , Proteínas Oncogénicas/genética , Fenotipo , Receptores de Superficie Celular/genética , Proteína Wnt3A/genética
17.
Am J Hum Genet ; 99(2): 501-10, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27453578

RESUMEN

Cell division terminates with cytokinesis and cellular separation. Autosomal-recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a reduction in brain and head size at birth in addition to non-progressive intellectual disability. MCPH is genetically heterogeneous, and 16 loci are known to be associated with loss-of-function mutations predominantly affecting centrosomal-associated proteins, but the multiple roles of centrosomes in cellular function has left questions about etiology. Here, we identified three families affected by homozygous missense mutations in CIT, encoding citron rho-interacting kinase (CIT), which has established roles in cytokinesis. All mutations caused substitution of conserved amino acid residues in the kinase domain and impaired kinase activity. Neural progenitors that were differentiated from induced pluripotent stem cells (iPSCs) derived from individuals with these mutations exhibited abnormal cytokinesis with delayed mitosis, multipolar spindles, and increased apoptosis, rescued by CRISPR/Cas9 genome editing. Our results highlight the importance of cytokinesis in the pathology of primary microcephaly.


Asunto(s)
Alelos , Citocinesis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Microcefalia/patología , Mitosis/genética , Mutación Missense/genética , Proteínas Serina-Treonina Quinasas/genética , Apoptosis/genética , Centrosoma/metabolismo , Niño , Preescolar , Femenino , Genes Recesivos , Humanos , Recién Nacido , Masculino , Linaje
18.
Metab Brain Dis ; 31(5): 1171-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27389245

RESUMEN

Two genes causing megalencephalic leukoencephalopathy with subcortical cysts (MLC) have been discovered so far. Here, we identified MLC1 and HEPACAM mutations in ten and two patients, respectively. The molecular results included an unreported inframe duplication mutation (c.929_930dupCTGCTG; p.L309dup) of MLC1 and a novel missense mutation c.293G>A (p.R98H) of HEPACAM. Further, the previously reported missense (c.278C>T; p.S93L) and the deletion/insertion (c.908_918delinsGCA; p.V303Gfs*96) were found in one and 8 patients (75 %), respectively. The 8 patients carrying the p.V303Gfs*96 shared a similar haplotype suggesting a founder effect. All mutations were in the homozygous state proving the autosomal recessive mode of inheritance. The core phenotype of macrocephaly, subcortical cysts and white matter appeared homogeneous although the patients differed in the onset, clinical course, disease severity and brain imaging findings. Our study expands the spectrum of mutations in MLC1 and HEPACAM and supports the genetic and clinical heterogeneity. Further, It confirms c.908_918delinsGCA (p.V303Gfs*96) as a founder mutation among Egyptian patients. This finding will contribute to provide targeted testing for this mutation in MLC patients in our population.


Asunto(s)
Quistes/diagnóstico por imagen , Quistes/genética , Efecto Fundador , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas de la Membrana/genética , Mutación/genética , Proteínas/genética , Adolescente , Encéfalo/diagnóstico por imagen , Proteínas de Ciclo Celular , Niño , Preescolar , Estudios de Cohortes , Egipto , Femenino , Humanos , Lactante , Masculino , Adulto Joven
19.
Eur J Paediatr Neurol ; 20(5): 714-22, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27289259

RESUMEN

AIM: Molybdenum cofactor deficiency (MoCD) and Sulfite oxidase deficiency (SOD) are rare autosomal recessive conditions of sulfur-containing amino acid metabolism with overlapping clinical features and emerging therapies. The clinical phenotype is indistinguishable and they can only be differentiated biochemically. MOCS1, MOCS2, MOCS3, and GPRN genes contribute to the synthesis of molybdenum cofactor, and SUOX gene encodes sulfite oxidase. The aim of this study was to elucidate the clinical, radiological, biochemical and molecular findings in patients with SOD and MoCD. METHODS: Detailed clinical and radiological assessment of 9 cases referred for neonatal encephalopathy with hypotonia, microcephaly, and epilepsy led to a consideration of disorders of sulfur-containing amino acid metabolism. The diagnosis of six with MoCD and three with SOD was confirmed by biochemical tests, targeted sequencing, and whole exome sequencing where suspicion of disease was lower. RESULTS: Novel SUOX mutations were detected in 3 SOD cases and a novel MOCS2 mutation in 1 MoCD case. Most patients presented in the first 3 months of life with intractable tonic-clonic seizures, axial hypotonia, limb hypertonia, exaggerated startle response, feeding difficulties, and progressive cystic encephalomalacia on brain imaging. A single patient with MoCD had hypertrophic cardiomyopathy, hitherto unreported with these diseases. INTERPRETATION: Our results emphasize that intractable neonatal seizures, spasticity, and feeding difficulties can be important early signs for these disorders. Progressive microcephaly, intellectual disability and specific brain imaging findings in the first year were additional diagnostic aids. These clinical cues can be used to minimize delays in diagnosis, especially since promising treatments are emerging for MoCD type A.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Errores Innatos del Metabolismo de los Metales , Sulfito-Oxidasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Coenzimas/genética , Egipto , Humanos , Recién Nacido , Enfermedades del Recién Nacido , Masculino , Errores Innatos del Metabolismo de los Metales/genética , Errores Innatos del Metabolismo de los Metales/fisiopatología , Metaloproteínas/genética , Cofactores de Molibdeno , Molibdoferredoxina/genética , Mutación , Fenotipo , Pteridinas , Sulfito-Oxidasa/genética
20.
Genome Biol ; 16: 210, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26416026

RESUMEN

BACKGROUND: Primordial dwarfism is a state of extreme prenatal and postnatal growth deficiency, and is characterized by marked clinical and genetic heterogeneity. RESULTS: Two presumably unrelated consanguineous families presented with an apparently novel form of primordial dwarfism in which severe growth deficiency is accompanied by distinct facial dysmorphism, brain malformation (microcephaly, agenesis of corpus callosum, and simplified gyration), and severe encephalopathy with seizures. Combined autozygome/exome analysis revealed a novel missense mutation in WDR4 as the likely causal variant. WDR4 is the human ortholog of the yeast Trm82, an essential component of the Trm8/Trm82 holoenzyme that effects a highly conserved and specific (m(7)G46) methylation of tRNA. The human mutation and the corresponding yeast mutation result in a significant reduction of m(7)G46 methylation of specific tRNA species, which provides a potential mechanism for primordial dwarfism associated with this lesion, since reduced m(7)G46 modification causes a growth deficiency phenotype in yeast. CONCLUSION: Our study expands the number of biological pathways underlying primordial dwarfism and adds to a growing list of human diseases linked to abnormal tRNA modification.


Asunto(s)
Enanismo/genética , Proteínas de Unión al GTP/genética , Microcefalia/genética , ARN de Transferencia/genética , Enanismo/etiología , Exoma/genética , Facies , Humanos , Metilación , Microcefalia/etiología , Mutación Missense , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA