Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Pharmacol ; 181(1): 70-86, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553842

RESUMEN

BACKGROUND AND PURPOSE: Diseases of raised intracranial pressure (ICP) cause severe morbidity and mortality. Multiple drugs are utilised to lower ICP including acetazolamide and topiramate. However, the evidence for their use is unclear. We aimed to assess the ICP modulatory effects and molecular effects at the choroid plexus (CP) of acetazolamide and topiramate. EXPERIMENTAL APPROACH: Female rats were implanted with telemetric ICP probes for physiological, freely moving 24/7 ICP recordings. Randomised cross-over studies were performed, where rats received acute (24 h) high doses of acetazolamide and topiramate, and chronic (10 days) clinically equivalent doses of acetazolamide and topiramate, all via oral gavage. Cerebrospinal fluid (CSF) secretion assays, and RT-qPCR and western blots on in vitro and in vivo CP, were used to investigate drug actions. KEY RESULTS: We demonstrate that acetazolamide and topiramate achieved maximal ICP reduction within 120 min of administration, and in combination doubled the ICP reduction over a 24-h period. Chronic administration of acetazolamide or topiramate lowered ICP by 25%. Topiramate decreased CSF secretion by 40%. Chronic topiramate increased the gene expression of Slc12a2 and Slc4a10 and protein expression of the sodium-dependent chloride/bicarbonate exchanger (NCBE), whereas chronic acetazolamide did not affect the expression of assessed genes. CONCLUSIONS AND IMPLICATIONS: Acetazolamide and topiramate are effective at lowering ICP at therapeutic levels. We provide the first evidence that topiramate lowers CSF secretion and that acetazolamide and topiramate may lower ICP via distinct molecular mechanisms. Thus, the combination of acetazolamide and topiramate may have utility for treating raised ICP.


Asunto(s)
Acetazolamida , Presión Intracraneal , Femenino , Ratas , Animales , Acetazolamida/farmacología , Acetazolamida/uso terapéutico , Presión Intracraneal/fisiología , Topiramato/farmacología
2.
BMC Neurosci ; 24(1): 60, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946101

RESUMEN

BACKGROUND: Female sex is a known risk factor of brain disorders with raised intracranial pressure (ICP) and sex hormones have been suggested to alter cerebrospinal fluid (CSF) dynamics, thus impairing ICP regulation in CSF disorders such as idiopathic intracranial hypertension (IIH). The choroid plexus (CP) is the tissue producing CSF and it has been hypothesized that altered hormonal composition could affect the activity of transporters involved in CSF secretion, thus affecting ICP. Therefore, we aimed to investigate if expression of various transporters involved in CSF secretion at CP were different between males and females and between females in different estrous cycle states. Steroid levels in serum was also investigated. METHODS: Female and male rats were used to determine sex-differences in the genes encoding for the transporters Aqp1 and 4, NKCC1, NBCe2, NCBE; carbonic anhydrase enzymes II and III (CA), subunits of the Na+/K+-ATPase including Atp1a1, Atp1b1 and Fxyd1 at CP. The estrous cycle stage metestrus (MET) and estrous (ES) were determined before euthanasia. Serum and CP were collected and subjected to RT-qPCR analysis and western blots. Serum was used to measure steroid levels using liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS: Significant differences in gene expression and steroid levels between males and ES females were found, while no differences were found between male and MET females. During ES, expression of Aqp1 was lower (p < 0.01) and NKCC1 was higher in females compared to males. CAII was lower while CAIII was higher in ES females (p < 0.0001). Gene expression of Atp1a1 was lower in ES compared to male (p = 0.0008). Several of these choroidal genes were also significantly different in MET compared to females in ES. Differences in gene expression during the estrus cycle were correlated to serum level of steroid hormones. Protein expression of AQP1 (p = 0.008) and CAII (p = 0.035) was reduced in ES females compared to males. CONCLUSIONS: This study demonstrates for the first time that expression at CP is sex-dependent and markedly affected by the estrous cycle in female rats. Further, expression was related to hormone levels in serum. This opens a completely new avenue for steroid regulation of the expression of CSF transporters and the close link to the understanding of CSF disorders such as IIH.


Asunto(s)
Plexo Coroideo , Proteínas de la Membrana , Ratas , Femenino , Masculino , Animales , Plexo Coroideo/metabolismo , Proteínas de la Membrana/metabolismo , Caracteres Sexuales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Esteroides/metabolismo
3.
Headache ; 63(9): 1220-1231, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796087

RESUMEN

OBJECTIVE: Caffeine, a non-selective adenosine receptor (AR) antagonist, is the most consumed psychostimulant in the world. Caffeine has been suggested to regulate cerebrospinal fluid secretion and is known both to alleviate and to trigger headache; however, its effect on the regulation of intracranial pressure (ICP) is not known. Therefore, we aimed to investigate the effects of caffeine on ICP and nociceptive responses. METHODS: Female Sprague-Dawley rats were implanted with a novel telemetric device for continuous ICP recordings, which allowed for continuous recordings in freely moving rats. A single dose of caffeine (30 or 120 mg/kg intraperitoneally) was given. In a second group (non-implanted), the acute effects of 30 mg/kg caffeine on periorbital threshold using Von Frey testing and spontaneous behavior were utilized using an automated behavioral registration platform (Laboratory, Animal, Behavior, Observation, Registration and Analysis System) in a randomized cross-over study. Quantitative polymerase chain reaction and immunofluorescence were used to localize ARs in the choroid plexus. RESULTS: A single dose of 30 mg/kg caffeine lowered the ICP by 35% at 165 min after administration (saline: 0.16 ± 0.9 vs caffeine: -1.18 ± 0.9 ΔmmHg, p = 0.0098) and lasted up to 12 h. Administration of 120 mg/kg caffeine showed a faster onset of decrease in ICP within 15 min by 50% (p = 0.0018) and lasted up to 12 h. The periorbital pain thresholds were higher after 1 h (saline: 224.6 ± 15.1 vs caffeine: 289.5 ± 8.7 g, p = 0.005) and lasted up to 5 h. Caffeine-treated rats had increased locomotor activity, speed, and changed grooming behavior. Expression of AR1 was found in the choroid plexus. CONCLUSIONS: This study demonstrates that caffeine has a lowering effect on ICP as an acute treatment. Interestingly, caffeine acutely caused an increased response in cephalic thresholds supporting hypoalgesic effects. Future studies investigating the beneficial effects of caffeine for elevated ICP are warranted.


Asunto(s)
Cafeína , Estimulantes del Sistema Nervioso Central , Animales , Femenino , Ratas , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Presión Intracraneal/fisiología , Percepción del Dolor , Ratas Sprague-Dawley
4.
Fluids Barriers CNS ; 20(1): 35, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231507

RESUMEN

BACKGROUND: Glucocorticoids (GCs) are widely prescribed for a variety of inflammatory diseases, but they are also used to treat raised intracranial pressure (ICP) caused by trauma or oedema. However, it is unclear if GCs independently modulate ICP and if GCs are involved in normal ICP regulation. In this study, we aimed to assess the ICP modulatory effects of GCs and their molecular consequences on choroid plexus (CP). METHODS: Adult female rats were implanted with telemetric ICP probes for physiological, continuous ICP recordings in a freely moving setup. Rats received prednisolone or vehicle via oral gavage in a randomized acute (24 h) ICP study. In a subsequent study rats received corticosterone or vehicle in drinking water for a 4-week chronic ICP study. CP were removed, and the expression of genes associated with cerebrospinal fluid secretion were assessed. RESULTS: A single prednisolone dose reduced ICP by up to 48% (P < 0.0001), where ICP was reduced within 7 h and was maintained for at least 14 h. Prednisolone increases ICP spiking (P = 0.0075) while not altering ICP waveforms. Chronic corticosterone reduces ICP by up to 44%, where ICP was lower for the entirety of the 4-week ICP recording period (P = 0.0064). ICP daily periodicity was not altered by corticosterone. Corticosterone ICP reduction was not accompanied by ICP spike differences or alteration in ICP spike periodicity. Chronic corticosterone treatment had modest effects on CP gene expression, lowering the expression of Car2 at CP (P = 0.047). CONCLUSIONS: GCs reduce ICP in both the acute and chronic setting to a similar degree. Moreover, GCs did not modify the diurnal rhythm of ICP, suggesting the diurnal variation of ICP periodicity is not under explicit control of GCs. ICP disturbances should be considered a consequence of GC therapy. Based on these experiments, GCs may have broader ICP therapeutic uses, but side effects must be taken into consideration.


Asunto(s)
Corticosterona , Glucocorticoides , Ratas , Femenino , Animales , Glucocorticoides/farmacología , Corticosterona/farmacología , Presión Intracraneal/fisiología , Prednisolona/farmacología , Telemetría
5.
Sci Rep ; 12(1): 9102, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650312

RESUMEN

Elevated intracranial pressure (ICP) is observed in many brain disorders. Obesity has been linked to ICP pathogenesis in disorders such as idiopathic intracranial pressure (IIH). We investigated the effect of diet induced obesity (DIO) on ICP and clinically relevant sequelae. Rats were fed either a control or high fat diet. Following weight gain long term ICP, headache behavior, body composition and retinal outcome were examined. Post-hoc analysis of retinal histology and molecular analysis of choroid plexus and trigeminal ganglion (TG) were performed. DIO rats demonstrated raised ICP by 55% which correlated with the abdominal fat percentage and increased non-respiratory slow waves, suggestive of altered cerebral compliance. Concurrently, DIO rats demonstrated a specific cephalic cutaneous allodynia which negatively correlated with the abdominal fat percentage. This sensitivity was associated with increased expression of headache markers in TG. Additionally, DIO rats had increased retinal nerve fiber layer thickness in vivo associated with raised ICP with a subsequent post-hoc demonstration of neuroretinal degeneration. This study demonstrates for the first time that DIO leads to raised ICP and subsequent clinically relevant symptom development. This novel model of non-traumatic raised ICP could expand the knowledge regarding disorders with elevated ICP such as IIH.


Asunto(s)
Hipertensión Intracraneal , Presión Intracraneal , Animales , Cefalea/complicaciones , Hipertensión Intracraneal/complicaciones , Presión Intracraneal/fisiología , Obesidad/complicaciones , Ratas , Roedores
6.
J Headache Pain ; 22(1): 123, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34629054

RESUMEN

BACKGROUND: Obesity confers adverse effects to every system in the body including the central nervous system. Obesity is associated with both migraine and idiopathic intracranial hypertension (IIH). The mechanisms underlying the association between obesity and these headache diseases remain unclear. METHODS: We conducted a narrative review of the evidence in both humans and rodents, for the putative mechanisms underlying the link between obesity, migraine and IIH. RESULTS: Truncal adiposity, a key feature of obesity, is associated with increased migraine morbidity and disability through increased headache severity, frequency and more severe cutaneous allodynia. Obesity may also increase intracranial pressure and could contribute to headache morbidity in migraine and be causative in IIH headache. Weight loss can improve both migraine and IIH headache. Preclinical research highlights that obesity increases the sensitivity of the trigeminovascular system to noxious stimuli including inflammatory stimuli, but the underlying molecular mechanisms remain unelucidated. CONCLUSIONS: This review highlights that at the epidemiological and clinical level, obesity increases morbidity in migraine and IIH headache, where weight loss can improve headache morbidity. However, further research is required to understand the molecular underpinnings of obesity related headache in order to generate novel treatments.


Asunto(s)
Trastornos Migrañosos , Seudotumor Cerebral , Cefalea , Humanos , Presión Intracraneal , Trastornos Migrañosos/complicaciones , Trastornos Migrañosos/epidemiología , Obesidad/complicaciones , Obesidad/epidemiología , Seudotumor Cerebral/complicaciones , Seudotumor Cerebral/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA