Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Chemistry ; : e202401782, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190779

RESUMEN

The emergence of drug resistance in cancer cells eventually causing relapse is a serious threat that demands new advances. Upregulation of the ATP-dependent binding cassette (ABC) transporters, such as ABCB1, significantly contributes to the emergence of drug resistance in cancer. Despite more than 30 years of therapeutic discovery, and several generations of inhibitors against P-gp, the search for effective agents that minimize toxicity to human cells, while maintaining efflux pump inhibition is still underway. Leads derived from natural product scaffolds are well-known to be effective in various therapeutic approaches. Inspired by the biosynthetic pathway to Nocardioazine A, a marine alkaloid known to inhibit the P-gp efflux pump in cancer cells, we devised a regioselective pathway to create structurally unique indole-C3-benzyl cyclo-L-Trp-L-Trp diketopiperazines (DKPs). Using bat cells as a model to derive effective ABCB1 inhibitors for targeting human P-gp efflux pumps, we have recently identified exo-C3-N-Dbn-Trp2 (13) as a lead ABCB1 inhibitor. This C3-benzylated lead inhibited ABCB1 better than Verapamil.[21] Additionally, C3-N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells and had no adverse effect on cell proliferation in cell cultures. For a clearer structure-activity relationship, we developed a broader screen to test C3-functionalized pyrroloindolines as ABCB1 inhibitors and observed that C3-benzylation is outperforming respective isoprenylated derivatives. Results arising from the molecular docking studies indicate that the interactions at the access tunnel between ABCB1 and the inhibitor result in a powerful predictor for the efficacy of the inhibitor. Based on fluorescence-based assays, we conclude that the most efficacious inhibitor is the p-cyano-derived exo-C3-N-Dbn-Trp2 (33 a), closely followed by the p-nitro substituted analogue. By combining assay results with molecular docking studies, we further correlate that the predictions based on the inhibitor interactions at the access tunnel provide clues about the design of improved ABCB1 inhibitors. As it has been well documented that ABCB1 itself is powerfully engaged in multi-drug resistance, this work lays the foundation for the design of a new class of inhibitors based on the endogenous amino acid-derived cyclo-L-Trp-L-Trp DKP scaffold.

2.
Commun Chem ; 7(1): 158, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003409

RESUMEN

Chemotherapy-induced drug resistance remains a major cause of cancer recurrence and patient mortality. ATP binding cassette subfamily B member 1 (ABCB1) transporter overexpression in tumors contributes to resistance, yet current ABCB1 inhibitors have been unsuccessful in clinical trials. To address this challenge, we propose a new strategy using tryptophan as a lead molecule for developing ABCB1 inhibitors. Our idea stems from our studies on bat cells, as bats have low cancer incidences and high ABCB1 expression. We hypothesized that potential ABCB1 substrates in bats could act as competitive inhibitors in humans. By molecular simulations of ABCB1-substrate interactions, we generated a benzylated Cyclo-tryptophan (C3N-Dbn-Trp2) that inhibits ABCB1 activity with efficacy comparable to or better than the classical inhibitor, verapamil. C3N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells with no adverse effect on cell proliferation. Our unique approach presents a promising lead toward developing effective ABCB1 inhibitors to treat drug-resistant cancers.

3.
Elife ; 132024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037770

RESUMEN

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.


Asunto(s)
Quirópteros , Fibroblastos , Quirópteros/metabolismo , Humanos , Fibroblastos/metabolismo , Animales , Metabolómica , Especies Reactivas de Oxígeno/metabolismo , Proteómica/métodos , Línea Celular , Consumo de Oxígeno , Multiómica
4.
Genes Cells ; 29(6): 451-455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553254

RESUMEN

The 10th International MDM2 Workshop was held at the National Cancer Center Research Institute (NCCRI) in Tokyo, Japan, from October 15 to 18, 2023. It attracted 166 participants from 12 countries. The meeting featured 52 talks and 41 poster presentations. In the first special session, six invited speakers gave educational and outstanding talks on breakthroughs in MDM2 research. Three keynote speakers presented emerging p53-independent functions of MDM2/MDM4, functional association of MDM2/p53 with cancer immunity, and drug discovery targeting the MDM2/MDM4-p53 pathway. Additionally, 19 invited speakers introduced their new findings. Twenty-one presenters, many of whom were young investigators, postdocs, and students, were selected from submitted abstracts and reported their exciting and unpublished results. For poster presenters, outstanding poster awards were given to the best presenters. There were many inspiring questions and discussions throughout the meeting. Social events like a welcome party, a workshop dinner, and an optional tour enabled further scientific interactions among the participants. The meeting successfully provided an exciting platform for scientific exchange. The experience gained from organizing this meeting will be handed over to the next organizers of the 11th International MDM2 Workshop.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Animales , Humanos , Asia , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
J Cell Sci ; 135(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775474

RESUMEN

Accelerated aerobic glycolysis is a distinctive metabolic property of cancer cells that confers dependency on glucose for survival. However, the therapeutic strategies targeting this vulnerability are still inefficient and have unacceptable side effects in clinical trials. Therefore, developing biomarkers to predict therapeutic efficacy would be essential to improve the selective targeting of cancer cells. Here, we found that cell lines that are sensitive to glucose deprivation have high expression of cystine/glutamate antiporter xCT (also known as SLC7A11). We found that cystine uptake and glutamate export through xCT contributed to rapid NADPH depletion under glucose deprivation. This collapse of the redox system oxidized and inactivated AMP-activated protein kinase (AMPK), a major regulator of metabolic adaptation, resulting in a metabolic catastrophe and cell death. Although this phenomenon was prevented by pharmacological or genetic inhibition of xCT, overexpression of xCT sensitized resistant cancer cells to glucose deprivation. Taken together, these findings suggest a novel crosstalk between AMPK and xCT that links metabolism and signal transduction, and reveal a metabolic vulnerability to glucose deprivation in cancer cells expressing high levels of xCT.


Asunto(s)
Cistina , Neoplasias , Proteínas Quinasas Activadas por AMP/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Línea Celular Tumoral , Cistina/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Neoplasias/genética , Oxidación-Reducción
7.
Br J Cancer ; 124(1): 299-312, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33144694

RESUMEN

BACKGROUND: Mutant TP53 interacts with other proteins to produce gain-of-function properties that contribute to cancer metastasis. However, the underlying mechanisms are still not fully understood. METHODS: Using immunoprecipitation and proximity ligation assays, we evaluated breast cancer anti-estrogen resistance 1 (BCAR1) as a novel binding partner of TP53R273H, a TP53 mutant frequently found in human cancers. The biological functions of their binding were examined by the transwell invasion assay. Clinical outcome of patients was analysed based on TP53 status and BCAR1 expression using public database. RESULTS: We discovered a novel interaction between TP53R273H and BCAR1. We found that BCAR1 translocates from the cytoplasm into the nucleus and binds to TP53R273H in a manner dependent on SRC family kinases (SFKs), which are known to enhance metastasis. The expression of full-length TP53R273H, but not the BCAR1 binding-deficient mutant TP53R273HΔ102-207, promoted cancer cell invasion. Furthermore, among the patients with mutant TP53, high BCAR1 expression was associated with a poorer prognosis. CONCLUSIONS: The interaction between TP53R273H and BCAR1 plays an important role in enhancing cancer cell invasion. Thus, our study suggests a disruption of the TP53R273H-BCAR1 binding as a potential therapeutic approach for TP53R273H-harbouring cancer patients.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Invasividad Neoplásica/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Mutación
8.
Science ; 366(6472): 1486-1492, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31857479

RESUMEN

Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.


Asunto(s)
Síndrome de Angelman/metabolismo , Canales de Calcio Tipo N/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome de Angelman/fisiopatología , Animales , Epilepsia/metabolismo , Humanos , Ratones , Modelos Neurológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Organoides , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico , Convulsiones/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Nat Commun ; 10(1): 2820, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249297

RESUMEN

Bats are unusual mammals, with the ability to fly, and long lifespans. In addition, bats have a low incidence of cancer, but the mechanisms underlying this phenomenon remain elusive. Here we discovered that bat cells are more resistant than human and mouse cells to DNA damage induced by genotoxic drugs. We found that bat cells accumulate less chemical than human and mouse cells, and efficient drug efflux mediated by the ABC transporter ABCB1 underlies this improved response to genotoxic reagents. Inhibition of ABCB1 triggers an accumulation of doxorubicin, DNA damage, and cell death. ABCB1 is expressed at higher levels in several cell lines and tissues derived from bats compared to humans. Furthermore, increased drug efflux and high expression of ABCB1 are conserved across multiple bat species. Our findings suggest that enhanced efflux protects bat cells from DNA damage induced by genotoxic compounds, which may contribute to their low cancer incidence.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Quirópteros/genética , Quirópteros/metabolismo , Daño del ADN/efectos de los fármacos , Mutágenos/toxicidad , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Doxorrubicina/toxicidad , Humanos , Ratones
10.
Cell Stress Chaperones ; 24(4): 835-849, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31230214

RESUMEN

Bats, unique among mammals with powered flight, have many species with the longest size-proportionate lifespan of all mammals. Evolutionary adaptations would have been required to survive the elevated body temperatures during flight. Heat shock protein (HSP), highly conserved master regulators of cell stress, expression was examined across tissues and various cell lines in bats. Basal expression level of major HSPs (HSP70 and HSP90) is significantly higher in two different bat species compared to other mammals. This HSP expression could be a bat-unique, key factor to modulate cellular stress and death. Consequently, bat cells survive prolonged heat treatment, along with other stress stimuli, in a HSP-dependent manner, whereas other mammalian cells succumbed. This suggests HSP expression in bats could be an important adaption to intrinsic metabolic stresses like flight and therefore an important model to study stress resilience and longevity in general.


Asunto(s)
Quirópteros/metabolismo , Vuelo Animal/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Longevidad/fisiología , Estrés Oxidativo/fisiología , Adaptación Fisiológica/fisiología , Animales , Línea Celular , Humanos
11.
J Immunol ; 201(2): 451-464, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29848755

RESUMEN

The ability of cells to induce the appropriate transcriptional response to inflammatory stimuli is crucial for the timely induction of host defense mechanisms. Although a role for tumor suppressor p14ARF (ARF) in the innate immune response was previously demonstrated, the underlying mechanism is still unclear. ARF is a potent upregulator of protein SUMOylation; however, no association of this function with the immune system has been made. In this study, we show the unique role of ARF in IFN-γ-induced immune response using human cell lines. Through a systematic search of proteins SUMOylated by ARF, we identified PIAS1, an inhibitor of IFN-activated transcription factor STAT1, as a novel ARF-binding partner and SUMOylation target. In response to IFN-γ treatment, ARF promoted PIAS1 SUMOylation to inhibit the ability of PIAS1 to attenuate IFN-γ response. Wild-type, but not ARF mutants unable to enhance PIAS1 SUMOylation, prevented the PIAS1-mediated inhibition of IFN-γ response. Conversely, the SUMO-deconjugase SENP1 deSUMOylated PIAS1 to reactivate PIAS1 that was inhibited by ARF. These findings suggest that PIAS1 function is negatively modulated by SUMO modification and that SUMOylation by ARF is required to inhibit PIAS1 activity and restore IFN-γ-induced transcription. In the presence of ARF, in which case PIAS1 is inhibited, depletion of PIAS1 did not have an additive effect on IFN-γ response, suggesting that ARF-mediated enhancement of IFN-γ response is mainly due to PIAS1 inhibition. Our findings reveal a novel function of ARF to inhibit PIAS1 by enhancing SUMOylation to promote the robust induction of IFN-γ response.


Asunto(s)
Inmunidad Innata/inmunología , Interferón gamma/inmunología , Proteínas Inhibidoras de STAT Activados/inmunología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/inmunología , Sumoilación/inmunología , Proteína p14ARF Supresora de Tumor/inmunología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Inflamación/inmunología , Factor de Transcripción STAT1/inmunología , Transcripción Genética/inmunología , Regulación hacia Arriba/inmunología
12.
Int J Mol Sci ; 19(3)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29518025

RESUMEN

Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases.


Asunto(s)
Glucosa/metabolismo , Glucólisis , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
FASEB J ; 32(7): 3892-3902, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29465311

RESUMEN

Sustained endoplasmic reticulum (ER) stress plays a major role in the development of many metabolic diseases, including cardiovascular disease, nonalcoholic fatty liver disease, insulin resistance, obesity, and diabetes. p32 is a multicompartmental protein involved in the regulation of oxidative phosphorylation and glucose oxidation. p32 ablation is associated with resistance to age-associated and diet-induced obesity through a mechanism that remains largely unknown. Here, we show that p32 promotes lipid biosynthesis by modulating fatty acid-induced ER stress. We found that p32 interacts with endoplasmic reticulum-anchored enzyme mannosyl-oligosaccharide glucosidase I (GCS1), an ER lumen-anchored glucosidase that is essential for the processing of N-linked glycoproteins, and reduces GCS1 in a lysosome-dependent manner. We demonstrate that increased GCS1 expression alleviates fatty acid-induced ER stress and is critical for suppressing ER stress-associated lipogenic gene activation, as demonstrated by the down-regulation of Srebp1, Fasn, and Acc. Consistently, suppression of p32 leads to increased GCS1 expression and alleviates fatty acid-induced ER stress, resulting in reduced lipid accumulation. Thus, p32 and GCS1 are regulators of ER function and lipid homeostasis and are potential therapeutic targets for the treatment of obesity and diabetes.-Liu, Y., Leslie, P. L., Jin, A., Itahana, K., Graves, L. M., Zhang, Y. p32 regulates ER stress and lipid homeostasis by down-regulating GCS1 expression.


Asunto(s)
Estrés del Retículo Endoplásmico , Metabolismo de los Lípidos , Proteínas Mitocondriales/metabolismo , alfa-Glucosidasas/metabolismo , Células 3T3 , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Homeostasis , Humanos , Ratones , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , alfa-Glucosidasas/genética
14.
Sci Signal ; 11(512)2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317521

RESUMEN

Cancer cells increase glucose metabolism to support aerobic glycolysis. However, only some cancer cells are acutely sensitive to glucose withdrawal, and the underlying mechanism of this selective sensitivity is unclear. We showed that glucose deprivation initiates a cell death pathway in cancer cells that is dependent on the kinase RIPK1. Glucose withdrawal triggered rapid plasma membrane depolarization and an influx of extracellular calcium into the cell through the L-type calcium channel Cav1.3 (CACNA1D), followed by activation of the kinase CAMK1. CAMK1 and the demethylase PPME1 were required for the subsequent demethylation and inactivation of the catalytic subunit of the phosphatase PP2A (PP2Ac) and the phosphorylation of RIPK1. Plasma membrane depolarization, PP2Ac demethylation, and cell death were prevented by glucose and, unexpectedly, by its nonmetabolizable analog 2-deoxy-d-glucose (2-DG), a glycolytic inhibitor. These findings reveal a previously unknown function of glucose as a signaling molecule that protects cells from death induced by plasma membrane depolarization, independently of its role in glycolysis. Components of this cancer cell death pathway represent potential therapeutic targets against cancer.


Asunto(s)
Calcio/metabolismo , Muerte Celular , Desmetilación , Glucosa/metabolismo , Glucólisis , Neoplasias/patología , Proteína Fosfatasa 2/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Humanos , Neoplasias/metabolismo , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
15.
Sci Rep ; 7(1): 5754, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720899

RESUMEN

Obesity is increasing in prevalence and has become a global public health problem. The main cause of obesity is a perturbation in energy homeostasis, whereby energy intake exceeds energy expenditure. Although mitochondrial dysfunction has been linked to the deregulation of energy homeostasis, the precise mechanism is poorly understood. Here, we identify mitochondrial p32 (also known as C1QBP) as an important regulator of lipid homeostasis that regulates both aerobic and anaerobic energy metabolism. We show that while whole-body deletion of the p32 results in an embryonic lethal phenotype, mice heterozygous for p32 are resistant to age- and high-fat diet-induced ailments, including obesity, hyperglycemia, and hepatosteatosis. Notably, p32 +/- mice are apparently healthy, demonstrate an increased lean-to-fat ratio, and show dramatically improved insulin sensitivity despite prolonged high-fat diet feeding. The p32 +/- mice show increased oxygen consumption and heat production, indicating that they expend more energy. Our analysis revealed that haploinsufficiency for p32 impairs glucose oxidation, which results in a compensatory increase in fatty acid oxidation and glycolysis. These metabolic alterations increase both aerobic and anaerobic energy expenditure. Collectively, our data show that p32 plays a critical role in energy homeostasis and represents a potential novel target for the development of anti-obesity drugs.


Asunto(s)
Metabolismo Energético/genética , Hiperglucemia/genética , Proteínas Mitocondriales/genética , Obesidad/genética , Animales , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía/genética , Glucólisis/genética , Heterocigoto , Homeostasis/genética , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Resistencia a la Insulina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Consumo de Oxígeno/genética
16.
Int J Med Sci ; 14(1): 13-17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28138304

RESUMEN

Globally, morbidity and mortality due to cancer are predicted to increase in both men and women in the coming decades. Furthermore, it is estimated that two thirds of these cancer-related deaths will occur in low-and middle-income countries (LMIC). In addition to morbidity and mortality, cancer also causes an enormous economic burden, especially in developing countries. There are several treatment and management options for cancer including chemotherapy, radiation therapy, surgery, and palliative care. Radiotherapy or radiation therapy (RT) can be an effective treatment, especially for localized or solid cancers; about half of cancer patients receive radiation as a curative or palliative treatment. Because of its low cost, for patients from LMIC with inoperable tumors, RT may be the only option. With the overall increase in the number of cancer patients especially in resource-starved LMIC, the need for more RT facilities further affects the economic growth of those countries. Therefore, an advanced molecular-targeted and more integrated approach involving either RT alone or with surgery and improved cancer drug access worldwide are urgent needs for cancer care.


Asunto(s)
Neoplasias/radioterapia , Radioterapia/métodos , Muerte Celular/efectos de la radiación , Países en Desarrollo , Humanos , Neoplasias/economía , Neoplasias/epidemiología , Radioterapia/economía , Radioterapia/estadística & datos numéricos
17.
Sci Rep ; 6: 28112, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27346849

RESUMEN

The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Bases , Diferenciación Celular , Línea Celular , Epigénesis Genética , Técnica del Anticuerpo Fluorescente Indirecta , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Metilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Estabilidad Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
18.
Elife ; 5: e07101, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26956429

RESUMEN

Genetic alterations which impair the function of the TP53 signaling pathway in TP53 wild-type human tumors remain elusive. To identify new components of this pathway, we performed a screen for genes whose loss-of-function debilitated TP53 signaling and enabled oncogenic transformation of human mammary epithelial cells. We identified transglutaminase 2 (TGM2) as a putative tumor suppressor in the TP53 pathway. TGM2 suppressed colony formation in soft agar and tumor formation in a xenograft mouse model. The depletion of growth supplements induced both TGM2 expression and autophagy in a TP53-dependent manner, and TGM2 promoted autophagic flux by enhancing autophagic protein degradation and autolysosome clearance. Reduced expression of both CDKN1A, which regulates the cell cycle downstream of TP53, and TGM2 synergized to promote oncogenic transformation. Our findings suggest that TGM2-mediated autophagy and CDKN1A-mediated cell cycle arrest are two important barriers in the TP53 pathway that prevent oncogenic transformation.


Asunto(s)
Autofagia , Transformación Celular Neoplásica , Células Epiteliales/enzimología , Células Epiteliales/fisiología , Proteínas de Unión al GTP/metabolismo , Transglutaminasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de Unión al GTP/genética , Pruebas Genéticas , Xenoinjertos , Humanos , Neoplasias Mamarias Experimentales/patología , Ratones , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/genética
19.
NPJ Genom Med ; 1: 16015, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29263814

RESUMEN

Li-Fraumeni syndrome (LFS) is a rare cancer predisposition syndrome usually associated with TP53 germline alterations. Its genetic basis in TP53 wild-type pedigrees is less understood. Using whole-genome sequencing, we identified a germline hemizygous deletion ablating CDKN2A-CDKN2B in a TP53 wild-type patient presenting with high-grade sarcoma, laryngeal squamous cell carcinoma and a family history suggestive of LFS. Patient-derived cells demonstrated reduced basal gene and protein expression of the CDKN2A-encoded tumour suppressors p14ARF and p16INK4A with concomitant decrease in p21 and faster cell proliferation, implying potential deregulation of p53-mediated cell cycle control. Review of 13 additional patients with pathogenic CDKN2A variants suggested associations of germline CDKN2A mutations with an expanded spectrum of non-melanoma familial cancers. To our knowledge, this is the first report of a germline gross deletion of the CDKN2A-CDKN2B locus in an LFS family. These findings highlight the potential contribution of germline CDKN2A deletions to cancer predisposition and the importance of interrogating the full extent of CDKN2A locus in clinical testing gene panels.

20.
Mol Cell Biol ; 35(16): 2851-63, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26055329

RESUMEN

The tumor suppressor ARF enhances the SUMOylation of target proteins; however, the physiological function of ARF-mediated SUMOylation has been unclear due to the lack of a known, associated E3 SUMO ligase. Here we uncover TRIM28/KAP1 as a novel ARF-binding protein and SUMO E3 ligase for NPM1/B23. ARF and TRIM28 cooperate to SUMOylate NPM1, a nucleolar protein that regulates centrosome duplication and genomic stability. ARF-mediated SUMOylation of NPM1 was attenuated by TRIM28 depletion and enhanced by TRIM28 overexpression. Coexpression of ARF and TRIM28 promoted NPM1 centrosomal localization by enhancing its SUMOylation and suppressed centrosome amplification; these functions required the E3 ligase activity of TRIM28. Conversely, depletion of ARF or TRIM28 increased centrosome amplification. ARF also counteracted oncogenic Ras-induced centrosome amplification. Centrosome amplification is often induced by oncogenic insults, leading to genomic instability. However, the mechanisms employed by tumor suppressors to protect the genome are poorly understood. Our findings suggest a novel role for ARF in maintaining genome integrity by facilitating TRIM28-mediated SUMOylation of NPM1, thus preventing centrosome amplification.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Centrosoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Ribosilacion-ADP/química , Animales , Línea Celular Tumoral , Centrosoma/ultraestructura , Humanos , Ratones , Células 3T3 NIH , Proteínas Nucleares/química , Nucleofosmina , Mapas de Interacción de Proteínas , Proteínas Represoras/química , Sumoilación , Proteína 28 que Contiene Motivos Tripartito , Ubiquitina-Proteína Ligasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA