Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891193

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética , Sistema Urinario/metabolismo , Anomalías Urogenitales/genética , Proteínas Anfibias/antagonistas & inhibidores , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Familia , Femenino , Factores de Transcripción Forkhead/metabolismo , Heterocigoto , Humanos , Lactante , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfolinos/genética , Morfolinos/metabolismo , Linaje , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sistema Urinario/anomalías , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Secuenciación del Exoma , Xenopus
2.
Am J Hum Genet ; 105(6): 1286-1293, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31708116

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life, and in utero obstruction to urine flow is a frequent cause of secondary upper urinary tract malformations. Here, using whole-exome sequencing, we identified three different biallelic mutations in CHRNA3, which encodes the α3 subunit of the nicotinic acetylcholine receptor, in five affected individuals from three unrelated families with functional lower urinary tract obstruction and secondary CAKUT. Four individuals from two families have additional dysautonomic features, including impaired pupillary light reflexes. Functional studies in vitro demonstrated that the mutant nicotinic acetylcholine receptors were unable to generate current following stimulation with acetylcholine. Moreover, the truncating mutations p.Thr337Asnfs∗81 and p.Ser340∗ led to impaired plasma membrane localization of CHRNA3. Although the importance of acetylcholine signaling in normal bladder function has been recognized, we demonstrate for the first time that mutations in CHRNA3 can cause bladder dysfunction, urinary tract malformations, and dysautonomia. These data point to a pathophysiologic sequence by which monogenic mutations in genes that regulate bladder innervation may secondarily cause CAKUT.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/etiología , Riñón/anomalías , Mutación , Receptores Nicotínicos/genética , Sistema Urinario/anomalías , Anomalías Urogenitales/etiología , Adulto , Enfermedades del Sistema Nervioso Autónomo/genética , Enfermedades del Sistema Nervioso Autónomo/patología , Femenino , Estudios de Seguimiento , Humanos , Riñón/patología , Masculino , Linaje , Pronóstico , Sistema Urinario/patología , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología , Adulto Joven
3.
Am J Hum Genet ; 105(2): 302-316, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31256877

RESUMEN

Members of a paralogous gene family in which variation in one gene is known to cause disease are eight times more likely to also be associated with human disease. Recent studies have elucidated DHX30 and DDX3X as genes for which pathogenic variant alleles are involved in neurodevelopmental disorders. We hypothesized that variants in paralogous genes encoding members of the DExD/H-box RNA helicase superfamily might also underlie developmental delay and/or intellectual disability (DD and/or ID) disease phenotypes. Here we describe 15 unrelated individuals who have DD and/or ID, central nervous system (CNS) dysfunction, vertebral anomalies, and dysmorphic features and were found to have probably damaging variants in DExD/H-box RNA helicase genes. In addition, these individuals exhibit a variety of other tissue and organ system involvement including ocular, outer ear, hearing, cardiac, and kidney tissues. Five individuals with homozygous (one), compound-heterozygous (two), or de novo (two) missense variants in DHX37 were identified by exome sequencing. We identified ten total individuals with missense variants in three other DDX/DHX paralogs: DHX16 (four individuals), DDX54 (three individuals), and DHX34 (three individuals). Most identified variants are rare, predicted to be damaging, and occur at conserved amino acid residues. Taken together, these 15 individuals implicate the DExD/H-box helicases in both dominantly and recessively inherited neurodevelopmental phenotypes and highlight the potential for more than one disease mechanism underlying these disorders.


Asunto(s)
ARN Helicasas DEAD-box/genética , Mutación Missense , Proteínas de Neoplasias/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , ARN Helicasas/genética , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Secuenciación del Exoma
4.
Kidney Int ; 95(4): 914-928, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30773290

RESUMEN

Approximately 500 monogenic causes of chronic kidney disease (CKD) have been identified, mainly in pediatric populations. The frequency of monogenic causes among adults with CKD has been less extensively studied. To determine the likelihood of detecting monogenic causes of CKD in adults presenting to nephrology services in Ireland, we conducted whole exome sequencing (WES) in a multi-centre cohort of 114 families including 138 affected individuals with CKD. Affected adults were recruited from 78 families with a positive family history, 16 families with extra-renal features, and 20 families with neither a family history nor extra-renal features. We detected a pathogenic mutation in a known CKD gene in 42 of 114 families (37%). A monogenic cause was identified in 36% of affected families with a positive family history of CKD, 69% of those with extra-renal features, and only 15% of those without a family history or extra-renal features. There was no difference in the rate of genetic diagnosis in individuals with childhood versus adult onset CKD. Among the 42 families in whom a monogenic cause was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown etiology (38%). In this multi-centre study of adults with CKD, a molecular genetic diagnosis was established in over one-third of families. In the evolving era of precision medicine, WES may be an important tool to identify the cause of CKD in adults.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Insuficiencia Renal Crónica/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Exoma/genética , Femenino , Humanos , Irlanda , Riñón , Masculino , Anamnesis , Persona de Mediana Edad , Mutación , Linaje , Medicina de Precisión , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Adulto Joven
5.
J Am Soc Nephrol ; 30(2): 201-215, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30655312

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) finds a CKD-related mutation in approximately 20% of patients presenting with CKD before 25 years of age. Although provision of a molecular diagnosis could have important implications for clinical management, evidence is lacking on the diagnostic yield and clinical utility of WES for pediatric renal transplant recipients. METHODS: To determine the diagnostic yield of WES in pediatric kidney transplant recipients, we recruited 104 patients who had received a transplant at Boston Children's Hospital from 2007 through 2017, performed WES, and analyzed results for likely deleterious variants in approximately 400 genes known to cause CKD. RESULTS: By WES, we identified a genetic cause of CKD in 34 out of 104 (32.7%) transplant recipients. The likelihood of detecting a molecular genetic diagnosis was highest for patients with urinary stone disease (three out of three individuals), followed by renal cystic ciliopathies (seven out of nine individuals), steroid-resistant nephrotic syndrome (nine out of 21 individuals), congenital anomalies of the kidney and urinary tract (ten out of 55 individuals), and chronic glomerulonephritis (one out of seven individuals). WES also yielded a molecular diagnosis for four out of nine individuals with ESRD of unknown etiology. The WES-related molecular genetic diagnosis had implications for clinical care for five patients. CONCLUSIONS: Nearly one third of pediatric renal transplant recipients had a genetic cause of their kidney disease identified by WES. Knowledge of this genetic information can help guide management of both transplant patients and potential living related donors.


Asunto(s)
Secuenciación del Exoma/métodos , Trasplante de Riñón/métodos , Medicina de Precisión/métodos , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/cirugía , Adolescente , Boston , Niño , Preescolar , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Pruebas Genéticas/métodos , Rechazo de Injerto , Supervivencia de Injerto , Hospitales Pediátricos , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Pronóstico , Insuficiencia Renal Crónica/fisiopatología , Estudios Retrospectivos , Medición de Riesgo , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Receptores de Trasplantes/estadística & datos numéricos , Resultado del Tratamiento
6.
J Am Soc Nephrol ; 29(9): 2348-2361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30143558

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/epidemiología , Linaje , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Animales , Humanos , Incidencia , Riñón/anomalías , Ratones , Fenotipo , Pronóstico , Medición de Riesgo , Sensibilidad y Especificidad , Distribución por Sexo , Sistema Urinario/anomalías , Anomalías Urogenitales/epidemiología , Reflujo Vesicoureteral/epidemiología
7.
PLoS One ; 13(1): e0191224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29351342

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.


Asunto(s)
Biomarcadores de Tumor/genética , Síndrome de Fraser/genética , Mutación Missense , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Recién Nacidos , Biomarcadores de Tumor/química , Proteínas de Unión al Calcio , Niño , Consanguinidad , Secuencia Conservada , Exones , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Humanos , Masculino , Ratones , Modelos Animales , Modelos Moleculares , Linaje , Homología de Secuencia de Aminoácido , Sistema Urogenital/crecimiento & desarrollo , Sistema Urogenital/metabolismo
8.
Clin J Am Soc Nephrol ; 13(1): 53-62, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29127259

RESUMEN

BACKGROUND AND OBJECTIVES: Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. RESULTS: In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. CONCLUSIONS: Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.


Asunto(s)
Análisis Mutacional de ADN/métodos , Secuenciación del Exoma , Marcadores Genéticos , Mutación , Síndrome Nefrótico/congénito , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Herencia , Humanos , Lactante , Masculino , Tasa de Mutación , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/epidemiología , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Adulto Joven
9.
Mol Syndromol ; 8(5): 272-277, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28878612

RESUMEN

We present the case of a patient of Macedonian origin with unilateral renal agenesis and ureterovesical junction obstruction in combination with further abnormalities including midface hypoplasia, scoliosis as well as camptodactyly of one toe. Whole-exome sequencing analysis revealed compound heterozygous variants in the FAT4 gene. Recessive variants in FAT4 are a known cause of van Maldergem syndrome (VMS) in which congenital anomalies of the kidney and urinary tract are a less characteristic but common feature. The initial presentation of our patient was not clinically recognizable. However, in view of the molecular findings, the most likely diagnosis is a mild manifestation of VMS. Only very few publications have reported patients with VMS and mutations in FAT4 to date. With this case, we hope to provide further insight into the phenotypic variability of this syndrome.

10.
Pediatr Nephrol ; 32(12): 2273-2282, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28779239

RESUMEN

BACKGROUND: Rhabdomyolysis is a clinical emergency that may cause acute kidney injury (AKI). It can be acquired or due to monogenic mutations. Around 60 different rare monogenic forms of rhabdomyolysis have been reported to date. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to nonspecific presentation, the high number of causative genes, and current lack of data on the prevalence of monogenic forms. METHODS: We employed whole exome sequencing (WES) to reveal the percentage of rhabdomyolysis cases explained by single-gene (monogenic) mutations in one of 58 candidate genes. We investigated a cohort of 21 unrelated families with rhabdomyolysis, in whom no underlying etiology had been previously established. RESULTS: Using WES, we identified causative mutations in candidate genes in nine of the 21 families (43%). We detected disease-causing mutations in eight of 58 candidate genes, grouped into the following categories: (1) disorders of fatty acid metabolism (CPT2), (2) disorders of glycogen metabolism (PFKM and PGAM2), (3) disorders of abnormal skeletal muscle relaxation and contraction (CACNA1S, MYH3, RYR1 and SCN4A), and (4) disorders of purine metabolism (AHCY). CONCLUSIONS: Our findings demonstrate a very high detection rate for monogenic etiologies using WES and reveal broad genetic heterogeneity for rhabdomyolysis. These results highlight the importance of molecular genetic diagnostics for establishing an etiologic diagnosis. Because these patients are at risk for recurrent episodes of rhabdomyolysis and subsequent risk for AKI, WES allows adequate prophylaxis and treatment for these patients and their family members and enables a personalized medicine approach.


Asunto(s)
Secuenciación del Exoma/métodos , Rabdomiólisis/genética , Adolescente , Adulto , Árabes/genética , Niño , Exoma , Predisposición Genética a la Enfermedad , Humanos , Judíos/genética , Mutación , Rabdomiólisis/etnología
11.
J Am Soc Nephrol ; 28(8): 2364-2376, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28381549

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of CKD in the first three decades of life. However, for most patients with CAKUT, the causative mutation remains unknown. We identified a kindred with an autosomal dominant form of CAKUT. By whole-exome sequencing, we identified a heterozygous truncating mutation (c.279delG, p.Trp93fs*) of the nuclear receptor interacting protein 1 gene (NRIP1) in all seven affected members. NRIP1 encodes a nuclear receptor transcriptional cofactor that directly interacts with the retinoic acid receptors (RARs) to modulate retinoic acid transcriptional activity. Unlike wild-type NRIP1, the altered NRIP1 protein did not translocate to the nucleus, did not interact with RARα, and failed to inhibit retinoic acid-dependent transcriptional activity upon expression in HEK293 cells. Notably, we also showed that treatment with retinoic acid enhanced NRIP1 binding to RARα RNA in situ hybridization confirmed Nrip1 expression in the developing urogenital system of the mouse. In explant cultures of embryonic kidney rudiments, retinoic acid stimulated Nrip1 expression, whereas a pan-RAR antagonist strongly reduced it. Furthermore, mice heterozygous for a null allele of Nrip1 showed a CAKUT-spectrum phenotype. Finally, expression and knockdown experiments in Xenopus laevis confirmed an evolutionarily conserved role for NRIP1 in renal development. These data indicate that dominant NRIP1 mutations can cause CAKUT by interference with retinoic acid transcriptional signaling, shedding light on the well documented association between abnormal vitamin A levels and renal malformations in humans, and suggest a possible gene-environment pathomechanism in this disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Mutación , Proteínas Nucleares/genética , Transducción de Señal/genética , Tretinoina/fisiología , Sistema Urinario/anomalías , Animales , Ratones , Proteína de Interacción con Receptores Nucleares 1
12.
J Biol Chem ; 287(35): 29348-61, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22733820

RESUMEN

Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.


Asunto(s)
Proteínas de Transporte de Catión , Enfermedades del Recién Nacido , Modelos Moleculares , Mutación Missense , Pliegue de Proteína , Multimerización de Proteína/genética , Zinc/deficiencia , Sustitución de Aminoácidos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , Citoplasma , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Femenino , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/metabolismo , Judaísmo , Masculino , Proteínas de Transporte de Membrana , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA