Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nanoscale ; 16(21): 10250-10261, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38713488

RESUMEN

In this research, we employ Brownian dynamics simulations, density functional theory, and mean-field theory to explore the profound influence of shape anisotropy of magnetic nanoplatelets on suspension magnetic response. Each platelet is modelled as an oblate cylinder with a longitudinal point dipole, with an emphasis on strong dipolar interactions conducive to self-assembly. We investigate static structural and magnetic properties, characterising the system through pair distribution function, static structure factor, and cluster-size distribution. The findings demonstrate that shape-specific interactions and clustering lead to significant changes in reorientational relaxation times. Under zero field, distinctive modes in the dynamic magnetic susceptibility identify individual particles and particle clusters. In the presence of an applied field, the characteristic relaxation time of clusters increases, while that of single particles decreases. This research provides insights into the intricate interplay between shape anisotropy, clustering, and magnetic response in platelet suspensions, offering valuable perspectives for recent experimental observations.

2.
Biosensors (Basel) ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38534227

RESUMEN

A flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of a replaceable reactor chamber. Its working volume was reduced to 10 µL against a previously reported similar cell. SPE was modified independently of the enzyme reactor with carbon black, pillar[5]arene, poly(amidoamine) dendrimers based on the p-tert-butylthiacalix[4]arene (PAMAM-calix-dendrimers) platform and electropolymerized 3,7-bis(4-aminophenylamino) phenothiazin-5-ium chloride. Introduction of the PAMAM-calix-dendrimers into the electrode coating led to a fivefold increase in the redox currents of the electroactive polymer. It was found that higher generations of the PAMAM-calix-dendrimers led to a greater increase in the currents measured. Coatings consisted of products of the electropolymerization of the phenothiazine with implemented pillar[5]arene and PAMAM-calix-dendrimers showing high efficiency in the electrochemical reduction of hydrogen peroxide that was formed in the enzymatic oxidation of uric acid. The presence of PAMAM-calix-dendrimer G2 in the coating increased the redox signal related to the uric acid assay by more than 1.5 times. The biosensor system was successfully applied for the enzymatic determination of uric acid in chronoamperometric mode. The following optimal parameters for the chronoamperometric determination of uric acid in flow-through conditions were established: pH 8.0, flow rate 0.2 mL·min-1, 5 U of uricase per reactor. Under these conditions, the biosensor system made it possible to determine from 10 nM to 20 µM of uric acid with the limit of detection (LOD) of 4 nM. Glucose (up to 1 mM), dopamine (up to 0.5 mM), and ascorbic acid (up to 50 µM) did not affect the signal of the biosensor toward uric acid. The biosensor was tested on spiked artificial urine samples, and showed 101% recovery for tenfold diluted samples. The ease of assembly of the flow cell and the low cost of the replacement parts make for a promising future application of the biosensor system in routine clinical analyses.


Asunto(s)
Técnicas Biosensibles , Dendrímeros , Ácido Úrico/análisis , Urato Oxidasa , Electrodos , Fenotiazinas
3.
Biosensors (Basel) ; 14(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38392012

RESUMEN

Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Acetilcolinesterasa , Preparaciones Farmacéuticas , Piperidinas/farmacología , Indanos/farmacología , Indanos/uso terapéutico
4.
Polymers (Basel) ; 15(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139874

RESUMEN

Flexible electronics have sparked significant interest in the development of electrically conductive polymer-based composite materials. While efforts are being made to fabricate these composites through laser integration techniques, a versatile methodology applicable to a broad range of thermoplastic polymers remains elusive. Moreover, the underlying mechanisms driving the formation of such composites are not thoroughly understood. Addressing this knowledge gap, our research focuses on the core processes determining the integration of reduced graphene oxide (rGO) with polymers to engineer coatings that are not only flexible and robust but also exhibit electrical conductivity. Notably, we have identified a particular range of laser power densities (between 0.8 and 1.83 kW/cm2), which enables obtaining graphene polymer composite coatings for a large set of thermoplastic polymers. These laser parameters are primarily defined by the thermal properties of the polymers as confirmed by thermal analysis as well as numerical simulations. Scanning electron microscopy with elemental analysis and X-ray photoelectron spectroscopy showed that conductivity can be achieved by two mechanisms-rGO integration and polymer carbonization. Additionally, high-speed videos allowed us to capture the graphene oxide (GO) modification and melt pool formation during laser processing. The cross-sectional analysis of the laser-processed samples showed that the convective flows are present in the polymer substrate explaining the observed behavior. Moreover, the practical application of our research is exemplified through the successful assembly of a conductive wristband for wearable devices. Our study not only fills a critical knowledge gap but also offers a tangible illustration of the potential impact of laser-induced rGO-polymer integration in materials science and engineering applications.

5.
Micromachines (Basel) ; 14(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38004860

RESUMEN

Platinum-based thin films are widely used to create microelectronic devices operating at temperatures above 500 °C. One of the most effective ways to increase the high-temperature stability of platinum-based films involves incorporating refractory metal oxides (e.g., ZrO2, HfO2). In such structures, refractory oxide is located along the metal grain boundaries and hinders the mobility of Pt atoms. However, the effect of annealing conditions on the morphology and functional properties of such multiphase systems is rarely studied. Here, we show that the two-step annealing of 250-nm-thick Pt-Rh/Zr multilayer films instead of the widely used isothermal annealing leads to a more uniform film morphology without voids and hillocks. The composition and morphology of as-deposited and annealed films were investigated using X-ray diffraction and scanning electron microscopy, combined with energy-dispersive X-ray spectroscopy. At the first annealing step at 450 °C, zirconium oxidation was observed. The second high-temperature annealing at 800-1000 °C resulted in the recrystallization of the Pt-Rh alloy. In comparison to the one-step annealing of Pt-Rh and Pt-Rh/Zr films, after two-step annealing, the metal phase in the Pt-Rh/Zr films has a smaller grain size and a less pronounced texture in the <111> direction, manifesting enhanced high-temperature stability. After two-step annealing at 450/900 °C, the Pt-Rh/Zr thin film possessed a grain size of 60 ± 27 nm and a resistivity of 17 × 10-6 Ω·m. The proposed annealing protocol can be used to create thin-film MEMS devices for operation at elevated temperatures, e.g., microheater-based gas sensors.

6.
Cells ; 12(19)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37830549

RESUMEN

Regeneration of periodontal tissues requires an integrated approach to the restoration of the periodontal ligament, cementum, and alveolar bone surrounding the teeth. Current strategies in endogenous regenerative dentistry widely use biomaterials, in particular the decellularized extracellular matrix (dECM), to facilitate the recruitment of populations of resident cells into damaged tissues and stimulate their proliferation and differentiation. The purpose of our study was to evaluate the effect of the exogenous components of the extracellular matrix (hyaluronic acid, laminin, fibronectin) on the differentiation of periodontal ligament stem cells (PDLSCs) cultured with dECM (combinations of decellularized tooth matrices and periodontal ligament) in a 3D collagen I hydrogel. The immunohistochemical expression of various markers in PDLSCs was assessed quantitatively and semi-quantitatively on paraffin sections. The results showed that PDLSCs cultured under these conditions for 14 days exhibited phenotypic characteristics consistent with osteoblast-like and odontoblast-like cells. This potential has been demonstrated by the expression of osteogenic differentiation markers (OC, OPN, ALP) and odontogenic markers (DSPP). This phenomenon corresponds to the in vivo state of the periodontal ligament, in which cells at the interface between bone and cementum tend to differentiate into osteoblasts or cementoblasts. The addition of fibronectin to the dECM most effectively induces the differentiation of PDLSCs into osteoblast-like and odontoblast-like cells under 3D culture conditions. Therefore, this bioengineered construct has a high potential for future use in periodontal tissue regeneration.


Asunto(s)
Fibronectinas , Ligamento Periodontal , Fibronectinas/farmacología , Osteogénesis , Hidrogeles/farmacología , Células Madre , Diferenciación Celular , Matriz Extracelular , Colágeno/farmacología
7.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834088

RESUMEN

We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.


Asunto(s)
Ácidos Carboxílicos , Halógenos , Halógenos/química , Aniones , Teoría Funcional de la Densidad , Ácido Benzoico
8.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447506

RESUMEN

This study focused on a potential application of electrically conductive, biocompatible, bioresorbable fibers for tubular conduits aimed at the regeneration of peripheral nerves. The conducting, mechanical, and biological properties of composite fibers based on chitosan and single-walled carbon nanotubes were investigated in this paper. It was shown that introducing 0.5 wt.% of SWCNT into the composite fibers facilitated the formation of a denser fiber structure, resulting in improved strength (σ = 260 MPa) and elastic (E = 14 GPa) characteristics. Additionally, the composite fibers were found to be biocompatible and did not cause significant inflammation or deformation during in vivo studies. A thin layer of connective tissue formed around the fiber.

9.
Pharmaceutics ; 15(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242807

RESUMEN

The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.

10.
Phys Rev E ; 107(3-1): 034604, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37072981

RESUMEN

When a ferrofluid is magnetized in a strong magnetic field, and then the field is switched off, the magnetization decays from its saturation value to zero. The dynamics of this process are controlled by the rotations of the constituent magnetic nanoparticles, and for the Brownian mechanism, the respective rotation times are strongly influenced by the particle size and the magnetic dipole-dipole interactions between the particles. In this work, the effects of polydispersity and interactions on the magnetic relaxation are studied using a combination of analytical theory and Brownian dynamics simulations. The theory is based on the Fokker-Planck-Brown equation for Brownian rotation and includes a self-consistent, mean-field treatment of the dipole-dipole interactions. The most interesting predictions from the theory are that, at short times, the relaxation of each particle type is equal to its intrinsic Brownian rotation time, while at long times, each particle type has the same effective relaxation time, which is longer than any of the individual Brownian rotation times. Noninteracting particles, though, always relax at a rate controlled only by the Brownian rotation times. This illustrates the importance of including the effects of polydispersity and interactions when analyzing the results from magnetic relaxometry experiments on real ferrofluids, which are rarely monodisperse.

11.
Biomolecules ; 13(1)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671506

RESUMEN

The regeneration of periodontal tissues is a decisive factor in the treatment of periodontitis. Currently, to achieve complete periodontal regeneration, many studies have evaluated the effectiveness of decellularized tissue-engineered constructs on periodontal regeneration. We studied the possibilities of osteogenic and odontogenic differentiation of periodontal progenitor and stem cells (SCs) of the periosteum and periodontal ligament, in decellularized tooth matrix (dTM) and periodontal ligament (dPDL), in 2D and 3D culture. The cell culture of periodontal cells without decellularized matrices was used as control. On the 14th day of cultivation of PDLSCs, PSCs, and PDLSCs + PSCs on dTM and/or dPDL scaffolds in 2D conditions, in all scaffold variants, a dense monolayer of spindle-shaped cells was intensely stained for markers of osteogenic differentiation, such as osteopontin and osteocalcin. Periodontal cells in the collagen I hydrogel (3D-dimensional culture) were more diverse in shape and, in combination of dTM and dPDL, in addition to osteogenic expression, expressed dentin sialophosphoprotein, an odontogenic differentiation marker. Thus, collagen I hydrogel contributed to the formation of conditions similar to those in vivo, and the combination of dTM with dPDL apparently formed a microenvironment that promoted osteogenic and odontogenic differentiation of periodontal cells.


Asunto(s)
Osteogénesis , Células Madre , Diferenciación Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Hidrogeles/metabolismo , Proliferación Celular
12.
Clin Exp Med ; 23(3): 619-643, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36085429

RESUMEN

Diagnosis and treatment of carcinoma of the exocrine part of the pancreas is a serious problem for modern medicine. Despite the identification of a large number of aberrant mutations in pancreatic ductal adenocarcinoma (PDAC), attempts to create effective therapeutic agents based on identified genetic or epigenetic variations have not been succesful. The role of the tumor microenvironment (TME) in tumor progression is currently a popular topic. Cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) are the main components of the tumor stroma and play an important role in the proliferation, invasiveness and metastasis of cancer. However, the mechanisms underlying the effect of CAFs and ECM on cancer progression are still unclear. Recent studies on stromal components and blockage of signaling pathways have brought some optimism to this area. New information on the role of TME will lead to the development of targeted therapies or combinations with modern chemotherapy for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Transducción de Señal , Neoplasias Pancreáticas
13.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499305

RESUMEN

There are currently no effective biomarkers for prognosis and optimal treatment selection to improve non-small cell lung cancer (NSCLC) survival outcomes. This study further validated a seven-gene panel for diagnosis and prognosis of NSCLC using RNA sequencing and proteomic profiles of patient tumors. Within the seven-gene panel, ZNF71 expression combined with dendritic cell activities defined NSCLC patient subgroups (n = 966) with distinct survival outcomes (p = 0.04, Kaplan-Meier analysis). ZNF71 expression was significantly associated with the activities of natural killer cells (p = 0.014) and natural killer T cells (p = 0.003) in NSCLC patient tumors (n = 1016) using Chi-squared tests. Overexpression of ZNF71 resulted in decreased expression of multiple components of the intracellular intrinsic and innate immune systems, including dsRNA and dsDNA sensors. Multi-omics networks of ZNF71 and the intracellular intrinsic and innate immune systems were computed as relevant to NSCLC tumorigenesis, proliferation, and survival using patient clinical information and in-vitro CRISPR-Cas9/RNAi screening data. From these networks, pan-sensitive and pan-resistant genes to 21 NCCN-recommended drugs for treating NSCLC were selected. Based on the gene associations with patient survival and in-vitro CRISPR-Cas9, RNAi, and drug screening data, MEK1/2 inhibitors PD-198306 and U-0126, VEGFR inhibitor ZM-306416, and IGF-1R inhibitor PQ-401 were discovered as potential targeted therapy that may also induce an immune response for treating NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Multiómica , Proteómica , Carcinogénesis , Proliferación Celular/genética , Biomarcadores de Tumor/genética
14.
Commun Biol ; 5(1): 1344, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477694

RESUMEN

Nicotinic acetylcholine receptor of α7 type (α7-nAChR) presented in the nervous and immune systems and epithelium is a promising therapeutic target for cognitive disfunctions and cancer treatment. Weak toxin from Naja kaouthia venom (WTX) is a non-conventional three-finger neurotoxin, targeting α7-nAChR with weak affinity. There are no data on interaction mode of non-conventional neurotoxins with nAChRs. Using α-bungarotoxin (classical three-finger neurotoxin with high affinity to α7-nAChR), we showed applicability of cryo-EM to study complexes of α7-nAChR extracellular ligand-binding domain (α7-ECD) with toxins. Using cryo-EM structure of the α7-ECD/WTX complex, together with NMR data on membrane active site in the WTX molecule and mutagenesis data, we reconstruct the structure of α7-nAChR/WTX complex in the membrane environment. WTX interacts at the entrance to the orthosteric site located at the receptor intersubunit interface and simultaneously forms the contacts with the membrane surface. WTX interaction mode with α7-nAChR significantly differs from α-bungarotoxin's one, which does not contact the membrane. Our study reveals the important role of the membrane for interaction of non-conventional neurotoxins with the nicotinic receptors.


Asunto(s)
Receptores Nicotínicos , Receptores Nicotínicos/genética , Toxinas de los Tres Dedos , Bungarotoxinas , Neurotoxinas/toxicidad
15.
Biosensors (Basel) ; 12(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36140061

RESUMEN

Fast and reliable determination of enzyme inhibitors are of great importance in environmental monitoring and biomedicine because of the high biological activity and toxicity of such species and the necessity of their reliable assessment in many media. In this work, a flow-through biosensor has been developed and produced by 3D printing from poly(lactic acid). Acetylcholinesterase from an electric eel was immobilized on the inner walls of the reactor cell. The concentration of thiocholine formed in enzymatic hydrolysis of the substrate was monitored amperometrically with a screen-printed carbon electrode modified with carbon black particles, pillar[5]arene, electropolymerized Methylene blue and thionine. In the presence of thiocholine, the cathodic current at -0.25 V decreased because of an alternative chemical reaction of the macrocycle. The conditions of enzyme immobilization and signal measurements were optimized and the performance of the biosensor was assessed in the determination of reversible (donepezil, berberine) and irreversible (carbofuran) inhibitors. In the optimal conditions, the flow-through biosensor made it possible to determine 1.0 nM-1.0 µM donepezil, 1.0 µM-1.0 mM berberine and 10 nM to 0.1 µM carbofuran. The AChE biosensor was tested on spiked samples of artificial urine for drugs and peanuts for carbofuran. Possible interference of the sample components was eliminated by dilution of the samples with phosphate buffer. Easy mounting, low cost of replaceable parts of the cell and satisfactory analytical and metrological characteristics made the biosensor a promising future application as a point-of-care or point-of-demand device outside of a chemical laboratory.


Asunto(s)
Berberina , Técnicas Biosensibles , Carbofurano , Acetilcolinesterasa , Carbofurano/análisis , Carbono , Donepezilo , Electrodos , Enzimas Inmovilizadas , Azul de Metileno , Fosfatos , Hollín , Tiocolina
16.
ACS Appl Bio Mater ; 5(8): 3999-4019, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35925883

RESUMEN

Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA). Nanosized MPs were prone to magnetite-maghemite phase transformation during scaffold fabrication, as revealed by Raman spectroscopy; however, for CA-functionalized nanoparticles, the main phase was found to be magnetite, with some traces of maghemite. Submicron MPs were resistant to the magnetite-maghemite phase transformation. MPs did not significantly affect the morphology and diameter of PHB fibers. The scaffolds containing CA-coated MPs lost 0.3 or 0.2% of mass in the lipase solution and PBS, respectively, whereas scaffolds doped with unmodified MPs showed no mass changes after 1 month of incubation in either medium. In all electrospun scaffolds, no alterations of the fiber morphology were observed. Possible mechanisms of the crystalline-lamellar-structure changes in hybrid PHB/Fe3O4 scaffolds during hydrolytic and enzymatic degradation are proposed. It was revealed that particle size and particle surface functionalization affect the mechanical properties of the hybrid scaffolds. The addition of unmodified MPs increased scaffolds' ultimate strength but reduced elongation at break after the biodegradation, whereas simultaneous increases in both parameters were observed for composite scaffolds doped with CA-coated MPs. The highest saturation magnetization─higher than that published in the literature─was registered for composite PHB scaffolds doped with submicron MPs. All PHB scaffolds proved to be biocompatible, and the ones doped with nanosized MPs yielded faster proliferation of rat mesenchymal stem cells. In addition, all electrospun scaffolds were able to support angiogenesis in vivo at 30 days after implantation in Wistar rats.


Asunto(s)
Óxido Ferrosoférrico , Andamios del Tejido , Animales , Hidroxibutiratos , Lipasa , Fenómenos Magnéticos , Poliésteres , Ratas , Ratas Wistar , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
17.
Phys Rev E ; 105(1-1): 014126, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193321

RESUMEN

This paper introduces a run-and-tumble model with self-reinforcing directionality and rests. We derive a single governing hyperbolic partial differential equation for the probability density of random-walk position, from which we obtain the second moment in the long-time limit. We find the criteria for the transition between superdiffusion and diffusion caused by the addition of a rest state. The emergence of superdiffusion depends on both the parameter representing the strength of self-reinforcement and the ratio between mean running and resting times. The mean running time must be at least 2/3 of the mean resting time for superdiffusion to be possible. Monte Carlo simulations validate this theoretical result. This work demonstrates the possibility of extending the telegrapher's (or Cattaneo) equation by adding self-reinforcing directionality so that superdiffusion occurs even when rests are introduced.

18.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948251

RESUMEN

An approach called cell-free therapy has rapidly developed in regenerative medicine over the past decade. Understanding the molecular mechanisms and signaling pathways involved in the internal potential of tissue repair inspires the development of new strategies aimed at controlling and enhancing these processes during regeneration. The use of stem cell mobilization, or homing for regeneration based on endogenous healing mechanisms, prompted a new concept in regenerative medicine: endogenous regenerative medicine. The application of cell-free therapeutic agents leading to the recruitment/homing of endogenous stem cells has advantages in overcoming the limitations and risks associated with cell therapy. In this review, we discuss the potential of cell-free products such as the decellularized extracellular matrix, growth factors, extracellular vesicles and miRNAs in endogenous bone and dental regeneration.


Asunto(s)
Regeneración Tisular Dirigida/tendencias , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Animales , Regeneración Ósea/fisiología , Huesos/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Matriz Extracelular Descelularizada/farmacología , Vesículas Extracelulares/fisiología , Regeneración Tisular Dirigida/métodos , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , MicroARNs/uso terapéutico , Células Madre , Ingeniería de Tejidos , Diente/fisiología , Cicatrización de Heridas
19.
Macromol Biosci ; 21(12): e2100266, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608754

RESUMEN

In current orthopedic practice, bone implants used to-date often exhibit poor osteointegration, impaired osteogenesis, and, eventually, implant failure. Actively pursued strategies for tissue engineering could overcome these shortcomings by developing new hybrid materials with bioinspired structure and enhanced regenerative potential. In this study, the osteogenic and therapeutic potential of bioactive vaterite is investigated as a functional component of a fibrous polymeric scaffold for bone regeneration. Hybrid two-layered polycaprolactone scaffolds coated with vaterite (PCL/CaCO3 ) are studied during their 28-days implantation period in a rat femur defect. After this period, the study of tissue formation in the defected area is performed by the histological study of femur cross-sections. Immobilization of alkaline phosphatase (ALP) into PCL/CaCO3 scaffolds accelerates new bone tissue formation and defect repair. PCL/CaCO3 and PCL/CaCO3 /ALP scaffolds reveal 37.3% and 62.9% areas, respectively, filled with newly formed bone tissue in cross-sections compared to unmineralized PCL scaffold (17.5%). Bone turnover markers are monitored on the 7th and 28th days after implantation and reveal an increase of osteocalcin level for both PCL/CaCO3 and PCL/CaCO3 /ALP compared with PCL indicating the activation of osteogenesis. These findings indicate that vaterite, as an osteoconductive component of polymeric scaffolds, promotes osteogenesis, supports angiogenesis, and facilitates bone defect repair.


Asunto(s)
Sustitutos de Huesos/química , Materiales Biocompatibles Revestidos/química , Fémur , Osteogénesis , Poliésteres/química , Andamios del Tejido/química , Animales , Fémur/lesiones , Fémur/metabolismo , Masculino , Ratas
20.
Phys Rev E ; 103(6-1): 062611, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271695

RESUMEN

The dynamic magnetic susceptibility, χ(ω), of a model ferrofluid at a very low concentration (volume fraction, approximately 0.05%), and with a range of dipolar coupling constants (1≤λ≤8), is examined using Brownian dynamics simulations. With increasing λ, the structural motifs in the system change from unclustered particles, through chains, to rings. This gives rise to a nonmonotonic dependence of the static susceptibility χ(0) on λ and qualitative changes to the frequency spectrum. The behavior of χ(0) is already understood, and the simulation results are compared to an existing theory. The single-particle rotational dynamics are characterized by the Brownian time, τ_{B}, which depends on the particle size, carrier-liquid viscosity, and temperature. With λ≤5.5, the imaginary part of the spectrum, χ^{''}(ω), shows a single peak near ω∼τ_{B}^{-1}, characteristic of single particles. With λ≥5.75, the spectrum is dominated by the low-frequency response of chains. With λ≥7, new features appear at high frequency, which correspond to intracluster motions of dipoles within chains and rings. The peak frequency corresponding to these intracluster motions can be computed accurately using a simple theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA