Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Carbohydr Polym ; 342: 122374, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048223

RESUMEN

Jute fibers are characterized by a heterogeneous chemical composition (cellulose and non-cellulosic components) and a complex layered structure with a hydrophobic surface outer layer responsible for their low wettability. In this work, after the removal of water-soluble components, raw jute fibers were subjected to atmospheric pressure dielectric barrier discharge (DBD) under different conditions (at 150 or 300 Hz) to tailor jute fiber surface structure and wettability. The research was focused on the aging effect during natural aging in a standard atmosphere investigated up to three weeks after DBD treatment. Alterations in the surface morphology of DBD-treated jute fibers were investigated by FE-SEM and AFM, while ATR-FTIR, XPS, and electrokinetic measurements were used to assess the changes in the jute fiber surface chemistry. Sorption properties were monitored through wetting time and capillary rise measurements. The sorption properties of DBD-treated jute fibers were improved (about 100 times lower wetting time and 15 % higher capillary rise height in comparison to untreated) due to the changes in surface chemistry (decreased lignin and hemicellulose content in parallel with cellulose oxidation) and morphology (about 4.6 times higher average roughness). The electrokinetic and sorption properties measurement confirmed the significance of aging effects in lignocellulosic fibers' functionalization using plasma.

2.
Mar Drugs ; 22(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38921591

RESUMEN

This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 µg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 µg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.


Asunto(s)
Alginatos , Antioxidantes , Etanol , Laminaria , Algas Marinas , Alginatos/química , Laminaria/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Etanol/química , Algas Marinas/química , Biomasa , Flavonoides/química , Flavonoides/aislamiento & purificación , Algas Comestibles
3.
Int J Biol Macromol ; 257(Pt 2): 128668, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092097

RESUMEN

This paper outlines a novel simple protocol for tuning the structure and properties of jute using sodium periodate (NaIO4) oxidation and coating with alginate. When compared to the raw jute, fabrics oxidized with a 0.2 or 0.4 % NaIO4 solution for 30-120 min exhibited an increased aldehyde group content (0.185 vs. 0.239-0.398 mmol/g), a significantly increased negative zeta potential (from -8.57 down to -20.12 mV), a slight disruption of fiber crystallinity, 15.1-37.5 % and 27.9-49.8 % lower fabric maximum force and stiffness, respectively. Owing to the removal of hydrophobic surface barrier, decreased crystallinity index and the presence of micropores on the fabrics' surfaces, oxidized fabrics have a 22.3-29.6 % improved ability for moisture sorption compared to raw fabric. Oxidized fabrics characterized by very long wetting times and excellent antioxidant activities (> 98 %), can find applications as hydrophobic packaging materials. To further extend the utilization of jute in biocarpet engineering such as water-binding geo-prebiotic supports, oxidized fabrics were coated with alginate resulting in 7.9-24.9 % higher moisture sorption and 352-660 times lower wetting times than their oxidized counterparts. This modification protocol has never been applied to lignocellulosic fibers and sheds new light on obtaining jute fabrics with tuned structure and properties intended for various applications.


Asunto(s)
Alginatos , Alginatos/química , Ácido Peryódico , Oxidación-Reducción , Interacciones Hidrofóbicas e Hidrofílicas
4.
Polymers (Basel) ; 15(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37376374

RESUMEN

Ionic liquid 1-butyl-3-methylimidazolium chloride [BMIM][Cl] was used to prepare cellulose (CELL), cellulose/polycaprolactone (CELL/PCL), cellulose/polycaprolactone/keratin (CELL/PCL/KER), and cellulose/polycaprolactone/keratin/ground calcium carbonate (CELL/PCL/KER/GCC) biodegradable mulch films. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) spectroscopy, optical microscopy, and Field-Emission Scanning Electron Microscopy (FE-SEM) were used to verify the films' surface chemistry and morphology. Mulch film made of only cellulose regenerated from ionic liquid solution exhibited the highest tensile strength (75.3 ± 2.1 MPa) and modulus of elasticity of 944.4 ± 2.0 MPa. Among samples containing PCL, CELL/PCL/KER/GCC is characterized by the highest tensile strength (15.8 ± 0.4 MPa) and modulus of elasticity (687.5 ± 16.6 MPa). The film's breaking strain decreased for all samples containing PCL upon the addition of KER and KER/GCC. The melting temperature of pure PCL is 62.3 °C, whereas that of CELL/PCL film has a slight tendency for melting point depression (61.0 °C), which is a characteristic of partially miscible polymer blends. Furthermore, Differential Scanning Calorimetry (DSC) analysis revealed that the addition of KER or KER/GCC to CELL/PCL films resulted in an increment in melting temperature from 61.0 to 62.6 and 68.9 °C and an improvement in sample crystallinity by 2.2 and 3.0 times, respectively. The light transmittance of all studied samples was greater than 60%. The reported method for mulch film preparation is green and recyclable ([BMIM][Cl] can be recovered), and the inclusion of KER derived by extraction from waste chicken feathers enables conversion to organic biofertilizer. The findings of this study contribute to sustainable agriculture by providing nutrients that enhance the growth rate of plants, and hence food production, while reducing environmental pressure. The addition of GCC furthermore provides a source of Ca2+ for plant micronutrition and a supplementary control of soil pH.

5.
Microorganisms ; 10(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36557671

RESUMEN

In the present review we have discussed the occurrence of ß-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.

6.
Antioxidants (Basel) ; 11(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36290785

RESUMEN

A diluted ethanol orange peel extract was used for sustainable dyeing and functionalization of different fabrics. The extract analysis was performed using UPLC-ESI-MS/MS; its total flavonoid (0.67 g RE/100 g d.w.) and antioxidant (2.81 g GAE/100 g d.w.) contents and antioxidant activity (IC50 of 65.5 µg/mL) were also determined. The extract dyeing performance at various dyebath pH values was evaluated using multifiber fabric. Among six fabrics, extract possessed the ability for dyeing wool, polyamide, and cellulose acetate (at pH 4.5), which color strength (K/S) values increased after washing (9.7-19.8 vs. 11.6-23.2). Extract:water ratio of 20:35 (v/v) was found to be sufficient for achieving satisfactory K/S values (i.e., 20.17, 12.56, and 10.38 for wool, polyamide, and cellulose acetate, respectively) that were slightly changed after washing. The optimal dyeing temperatures for wool, polyamide, and cellulose acetate are 55, 35, and 25 °C, while the equilibrium dye exhaustion at those temperatures was achieved after 45, 120, and 90 min, respectively. The color coordinate measurements revealed that wool and polyamide fabrics are yellower than cellulose acetate, while, compared to polyamide and cellulose acetate, wool is redder. Possible interactions between selected fabrics and extract compounds are suggested. All fabrics possessed excellent antioxidant activity (88.6-99.6%) both before and after washing. Cellulose acetate provided maximum bacterial reduction (99.99%) for Escherichia coli, and Staphylococcus aureus, which in the case of Staphylococcus aureus remained unchanged after washing. Orange peel extract could be used for simultaneous dyeing and functionalization of wool and polyamide (excellent antioxidant activity) and cellulose acetate (excellent antioxidant and antibacterial activity) fabrics.

7.
Molecules ; 26(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361726

RESUMEN

FINEAU (2021-2024) is a trans-disciplinary research project involving French, Serbian, Italian, Portuguese and Romanian colleagues, a French agricultural cooperative and two surface-treatment industries, intending to propose chènevotte, a co-product of the hemp industry, as an adsorbent for the removal of pollutants from polycontaminated wastewater. The first objective of FINEAU was to prepare and characterize chènevotte-based materials. In this study, the impact of water washing and treatments (KOH, Na2CO3 and H3PO4) on the composition and structure of chènevotte (also called hemp shives) was evaluated using chemical analysis, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray computed nanotomography (nano-CT), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state NMR spectroscopy and thermogravimetric analysis. The results showed that all these techniques are complementary and useful to characterize the structure and morphology of the samples. Before any chemical treatment, the presence of impurities with a compact unfibrillated structure on the surfaces of chènevotte samples was found. Data indicated an increase in the crystallinity index and significant changes in the chemical composition of each sample after treatment as well as in surface morphology and roughness. The most significant changes were observed in alkaline-treated samples, especially those treated with KOH.


Asunto(s)
Cannabis/química , Productos Agrícolas/química , Residuos/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Europa (Continente) , Humanos , Cinética , Ensayo de Materiales , Termogravimetría
8.
Molecules ; 26(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34299474

RESUMEN

Lignocellulosic fibers extracted from plants are considered an interesting raw material for environmentally friendly products with multiple applications. This work investigated the feasibility of using hemp- and flax-based materials in the form of felts as biosorbents for the removal of metals present in aqueous solutions. Biosorption of Al, Cd, Co, Cu, Mn, Ni and Zn from a single solution by the two lignocellulosic-based felts was examined using a batch mode. The parameters studied were initial metal concentration, adsorbent dosage, contact time, and pH. In controlled conditions, the results showed that: (i) the flax-based felt had higher biosorption capacities with respect to the metals studied than the hemp-based felt; (ii) the highest removal efficiency was always obtained for Cu ions, and the following order of Cu > Cd > Zn > Ni > Co > Al > Mn was found for both examined biosorbents; (iii) the process was rapid and 10 min were sufficient to attain the equilibrium; (iv) the efficiency improved with the increase of the adsorbent dosage; and (v) the biosorption capacities were independent of pH between 4 and 6. Based on the obtained results, it can be considered that plant-based felts are new, efficient materials for metal removal.


Asunto(s)
Cannabis/química , Lino/química , Metales Pesados/análisis , Metales Pesados/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Lignina/química , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA