Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Cell Rep ; 42(10): 113309, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862168

RESUMEN

The paraventricular nucleus of the thalamus (PVT) projects axons to multiple areas, mediates a wide range of behaviors, and exhibits regional heterogeneity in both functions and axonal projections. Still, questions regarding the cell types present in the PVT and the extent of their differences remain inadequately addressed. We applied single-cell RNA sequencing to depict the transcriptomic characteristics of mouse PVT neurons. We found that one of the most significant variances in the PVT transcriptome corresponded to the anterior-posterior axis. While the single-cell transcriptome classified PVT neurons into five types, our transcriptomic and histological analyses showed continuity among the cell types. We discovered that anterior and posterior subpopulations had nearly non-overlapping projection patterns, while another population showed intermediate patterns. In addition, these subpopulations responded differently to appetite-related neuropeptides, with their activation showing opposing effects on food consumption. Our studies unveiled the contrasts and the continuity of PVT neurons that underpin their function.


Asunto(s)
Núcleos Talámicos de la Línea Media , Núcleo Hipotalámico Paraventricular , Animales , Ratones , Núcleos Talámicos de la Línea Media/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Tálamo , Transcriptoma/genética
3.
Nat Commun ; 14(1): 3750, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386010

RESUMEN

Defects in gastric progenitor cell differentiation are associated with various gastric disorders, including atrophic gastritis, intestinal metaplasia, and gastric cancer. However, the mechanisms underlying the multilineage differentiation of gastric progenitor cells during healthy homeostasis remain poorly understood. Here, using a single-cell RNA sequencing method, Quartz-Seq2, we analyzed the gene expression dynamics of progenitor cell differentiation toward pit cell, neck cell, and parietal cell lineages in healthy adult mouse corpus tissues. Enrichment analysis of pseudotime-dependent genes and a gastric organoid assay revealed that EGFR-ERK signaling promotes pit cell differentiation, whereas NF-κB signaling maintains gastric progenitor cells in an undifferentiated state. In addition, pharmacological inhibition of EGFR in vivo resulted in a decreased number of pit cells. Although activation of EGFR signaling in gastric progenitor cells has been suggested as one of the major inducers of gastric cancers, our findings unexpectedly identified that EGFR signaling exerts a differentiation-promoting function, not a mitogenic function, in normal gastric homeostasis.


Asunto(s)
Neoplasias Gástricas , Transcriptoma , Animales , Ratones , Neoplasias Gástricas/genética , Homeostasis , Diferenciación Celular/genética , Receptores ErbB/genética
4.
Commun Biol ; 5(1): 935, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085162

RESUMEN

SLITRK1 is an obsessive-compulsive disorder spectrum-disorders-associated gene that encodes a neuronal transmembrane protein. Here we show that SLITRK1 suppresses noradrenergic projections in the neonatal prefrontal cortex, and SLITRK1 functions are impaired by SLITRK1 mutations in patients with schizophrenia (S330A, a revertant of Homo sapiens-specific residue) and bipolar disorder (A444S). Slitrk1-KO newborns exhibit abnormal vocalizations, and their prefrontal cortices show excessive noradrenergic neurites and reduced Semaphorin3A expression, which suppresses noradrenergic neurite outgrowth in vitro. Slitrk1 can bind Dynamin1 and L1 family proteins (Neurofascin and L1CAM), as well as suppress Semaphorin3A-induced endocytosis. Neurofascin-binding kinetics is altered in S330A and A444S mutations. Consistent with the increased obsessive-compulsive disorder prevalence in males in childhood, the prefrontal cortex of male Slitrk1-KO newborns show increased noradrenaline levels, and serotonergic varicosity size. This study further elucidates the role of noradrenaline in controlling the development of the obsessive-compulsive disorder-related neural circuit.


Asunto(s)
Norepinefrina , Corteza Prefrontal , Axones , Humanos , Recién Nacido , Masculino , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Neuritas , Proyección Neuronal
5.
J Neural Transm (Vienna) ; 129(7): 913-924, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35501530

RESUMEN

Lithium's inhibitory effect on enzymes involved in sulfation process, such as inhibition of 3'(2')-phosphoadenosine 5'-phosphate (PAP) phosphatase, is a possible mechanism of its therapeutic effect for bipolar disorder (BD). 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is translocated from cytosol to Golgi lumen by PAPS transporter 1 (PAPST1/SLC35B2), where it acts as a sulfa donor. Since SLC35B2 was previously recognized as a molecule that facilitates the release of D-serine, a co-agonist of N-methyl-D-aspartate type glutamate receptor, altered function of SLC35B2 might be associated with the pathophysiology of BD and schizophrenia (SCZ). We performed genetic association analyses of the SLC35B2 gene using Japanese cohorts with 366 BD cases and 370 controls and 2012 SCZ cases and 2170 controls. We then investigated expression of SLC35B2 mRNA in postmortem brains by QPCR using a Caucasian cohort with 33 BD and 34 SCZ cases and 34 controls and by in situ hybridization using a Caucasian cohort with 37 SCZ and 29 controls. We found significant associations between three SNPs (rs575034, rs1875324, and rs3832441) and BD, and significantly reduced SLC35B2 mRNA expression in postmortem dorsolateral prefrontal cortex (DLPFC) of BD. Moreover, we observed normalized SLC35B2 mRNA expression in BD subgroups who were medicated with lithium. While there was a significant association of SLC35B2 with SCZ (SNP rs2233437), its expression was not changed in SCZ. These findings indicate that SLC35B2 might be differentially involved in the pathophysiology of BD and SCZ by influencing the sulfation process and/or glutamate system in the central nervous system.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Humanos , Litio/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transportadores de Sulfato/genética
6.
Transl Psychiatry ; 12(1): 84, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35220405

RESUMEN

Several large-scale whole-exome sequencing studies in patients with schizophrenia (SCZ) and autism spectrum disorder (ASD) have identified rare variants with modest or strong effect size as genetic risk factors. Dysregulation of cellular calcium homeostasis might be involved in SCZ/ASD pathogenesis, and genes encoding L-type voltage-gated calcium channel (VGCC) subunits Cav1.1 (CACNA1S), Cav1.2 (CACNA1C), Cav1.3 (CACNA1D), and T-type VGCC subunit Cav3.3 (CACNA1I) recently were identified as risk loci for psychiatric disorders. We performed a screening study, using the Ion Torrent Personal Genome Machine (PGM), of exon regions of these four candidate genes (CACNA1C, CACNA1D, CACNA1S, CACNA1I) in 370 Japanese patients with SCZ and 192 with ASD. Variant filtering was applied to identify biologically relevant mutations that were not registered in the dbSNP database or that have a minor allele frequency of less than 1% in East-Asian samples from databases; and are potentially disruptive, including nonsense, frameshift, canonical splicing site single nucleotide variants (SNVs), and non-synonymous SNVs predicted as damaging by five different in silico analyses. Each of these filtered mutations were confirmed by Sanger sequencing. If parental samples were available, segregation analysis was employed for measuring the inheritance pattern. Using our filter, we discovered one nonsense SNV (p.C1451* in CACNA1D), one de novo SNV (p.A36V in CACNA1C), one rare short deletion (p.E1675del in CACNA1D), and 14 NSstrict SNVs (non-synonymous SNV predicted as damaging by all of five in silico analyses). Neither p.A36V in CACNA1C nor p.C1451* in CACNA1D were found in 1871 SCZ cases, 380 ASD cases, or 1916 healthy controls in the independent sample set, suggesting that these SNVs might be ultra-rare SNVs in the Japanese population. The neuronal splicing isoform of Cav1.2 with the p.A36V mutation, discovered in the present study, showed reduced Ca2+-dependent inhibition, resulting in excessive Ca2+ entry through the mutant channel. These results suggested that this de novo SNV in CACNA1C might predispose to SCZ by affecting Ca2+ homeostasis. Thus, our analysis successfully identified several ultra-rare and potentially disruptive gene variants, lending partial support to the hypothesis that VGCC-encoding genes may contribute to the risk of SCZ/ASD.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Pueblo Asiatico/genética , Trastorno del Espectro Autista/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Japón , Esquizofrenia/genética
7.
Mol Psychiatry ; 26(12): 7550-7559, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34262135

RESUMEN

Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin ß (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.


Asunto(s)
Trastorno Autístico , N-Metiltransferasa de Histona-Lisina/genética , Animales , Encéfalo/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Protocadherinas
8.
Transl Psychiatry ; 11(1): 275, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966051

RESUMEN

Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lactoilglutatión Liasa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactoilglutatión Liasa/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Piruvaldehído
9.
J Affect Disord ; 290: 61-64, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33993081

RESUMEN

BACKGROUND: Brain-derived neurotrophic factor (BDNF) antisense RNA (BDNF-AS) was identified as naturally conserved non-coding antisense RNA that suppresses the transcription of BDNF. METHODS: We measured the expression of BDNF mRNA and BDNF-AS mRNA in iPSC and NSC from bipolar disorder (BD) patients and healthy control subjects, and postmortem brain samples such as the corpus callosum, the Brodmann area (BA8), and BA46 from BD patients and age- and sex-matched controls. RESULTS: The expression of BDNF mRNA in iPSC from BD patients (n = 6) was significantly lower than that of control subjects (n = 4) although the expression of BDNF mRNA in NSC from BD patients was significantly higher than that of control subjects. In contrast, there were no changes in the expression of BDNF-AS mRNA in both iPSC and NSC between two groups. The expression of BDNF mRNA in the BA46 from BD patients (n = 35) was significantly lower than that of controls (n = 34) although the expression of BDNF mRNA in the corpus callosum and BA8 was not different between two groups (n = 15). In contrast, there were no changes in expression of BDNF-AS mRNA in the three brain regions between two groups. Interestingly, there were significant positive correlations between BDNF mRNA expression and BDNF-AS mRNA expression in the postmortem brain samples. LIMITATIONS: Sample sizes are relatively low. CONCLUSIONS: Our data suggest that abnormalities in the expression of BDNF, but not BDNF-AS, play a role in the pathogenesis of BD.


Asunto(s)
Trastorno Bipolar , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Trastorno Bipolar/genética , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo
10.
EMBO Mol Med ; 13(4): e12574, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33656268

RESUMEN

Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.


Asunto(s)
Esquizofrenia , Animales , Miedo , Expresión Génica , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Noqueados , Esquizofrenia/genética , Factores de Transcripción/genética
11.
Schizophr Bull ; 47(4): 1190-1200, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33595068

RESUMEN

We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest logarithm of odds score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/genética , Cadherinas/genética , Inhibición Prepulso/genética , Esquizofrenia/genética , Alelos , Animales , Humanos , Ratones , Sitios de Carácter Cuantitativo
12.
Cereb Cortex ; 31(1): 448-462, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32924060

RESUMEN

Structural changes in the corpus callosum have been reported in schizophrenia; however, the underlying molecular mechanism remains unclear. As the corpus callosum is high in lipid content, we analyzed the lipid contents of the corpora callosa from 15 patients with schizophrenia and 15 age- and sex-matched controls using liquid chromatography coupled to tandem mass spectrometry and identified lipid combinations associated with schizophrenia. Real-time quantitative polymerase chain reaction analyses using extended samples (schizophrenia, n = 95; control, n = 91) showed low expression levels of lipid metabolism-related genes and their potential upstream transcription factors in schizophrenia. Subsequent pathway analysis identified a gene regulatory network where nuclear factor of activated T cells 2 (NFATC2) is placed most upstream. We also observed low gene expression levels of microglial markers, inflammatory cytokines, and colony-stimulating factor 1 receptor (CSF1R), which is known to regulate the density of microglia, in the corpus callosum in schizophrenia. The interactions between CSF1R and several genes in the presently identified gene network originating from NFATC2 have been reported. Collectively, this study provides evidence regarding lipid abnormalities in the corpora callosa of patients with schizophrenia and proposes the potential role of impaired "NFATC2-relevant gene network-microglial axis" as its underlying mechanism.


Asunto(s)
Biomarcadores/análisis , Cuerpo Calloso/patología , Lípidos , Microglía/patología , Esquizofrenia/patología , Adulto , Cromatografía Liquida/métodos , Cuerpo Calloso/metabolismo , Citocinas/metabolismo , Femenino , Redes Reguladoras de Genes/fisiología , Humanos , Masculino , Microglía/metabolismo , Persona de Mediana Edad , Esquizofrenia/metabolismo
13.
Eur Arch Psychiatry Clin Neurosci ; 271(4): 775-781, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32623490

RESUMEN

It has been suggested that dopaminergic neurotransmission plays important roles for the psychotic symptoms and probably etiology of schizophrenia. In our recent preliminary study, we demonstrated that the specific allele combinations of dopamine-related functional single nucleotide polymorphisms (SNPs), rs10770141, rs4680, and rs1800497 could indicate risks for schizophrenia. The present validation study involved a total of 2542 individuals who were age- and sex-matched in a propensity score matching analysis, and the results supported the statistical significances of the proposed genetic risks described in our previous reports. The estimated odds ratios were 1.24 (95% CI 1.06-1.45, p < 0.001) for rs4680, 1.73 (95% CI 1.47-2.02, p < 0.0001) for rs1800497, and 1.79 (95% CI 1.35-2.36, p < 0.0001) for rs10770141. A significant relationship was also revealed among these three polymorphisms and schizophrenia, with corresponding coefficients (p < 0.0001). In this study, we also present a new scoring model for the identification of individuals with the disease risks. Using the cut-off value of 2, our model exhibited sensitivity for almost two-thirds of all of the schizophrenia patients: odds ratio 1.87, 95% CI 1.59-2.19, p < 0.0001. In conclusion, we identified significant associations of dopamine-related genetic combinations with schizophrenia. These findings suggest that some types of dopaminergic neurotransmission play important roles for development of schizophrenia, and this type of approach may also be applicable for other multifactorial diseases, providing a potent new risk predictor.


Asunto(s)
Esquizofrenia , Estudios de Casos y Controles , Dopamina , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
14.
EBioMedicine ; 62: 103130, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33279456

RESUMEN

BACKGROUND: The pathophysiology of schizophrenia, a major psychiatric disorder, remains elusive. In this study, the role of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor (RXR) families, belonging to the ligand-activated nuclear receptor superfamily, in schizophrenia, was analyzed. METHODS: The PPAR/RXR family genes were screened by exploiting molecular inversion probe (MIP)-based targeted next-generation sequencing (NGS) using the samples of 1,200 Japanese patients with schizophrenia. The results were compared with the whole-genome sequencing databases of the Japanese cohort (ToMMo) and the gnomAD. To reveal the relationship between PPAR/RXR dysfunction and schizophrenia, Ppara KO mice and fenofibrate (a clinically used PPARα agonist)-administered mice were assessed by performing behavioral, histological, and RNA-seq analyses. FINDINGS: Our findings indicate that c.209-2delA, His117Gln, Arg141Cys, and Arg226Trp of the PPARA gene are risk variants for schizophrenia. The c.209-2delA variant generated a premature termination codon. The three missense variants significantly decreased the activity of PPARα as a transcription factor in vitro. The Ppara KO mice exhibited schizophrenia-relevant phenotypes, including behavioral deficits and impaired synaptogenesis in the cerebral cortex. Oral administration of fenofibrate alleviated spine pathology induced by phencyclidine, an N-methyl-d-aspartate (NMDA) receptor antagonist. Furthermore, pre-treatment with fenofibrate suppressed the sensitivity of mice to another NMDA receptor antagonist, MK-801. RNA-seq analysis revealed that PPARα regulates the expression of synaptogenesis signaling pathway-related genes. INTERPRETATION: The findings of this study indicate that the mechanisms underlying schizophrenia pathogenesis involve PPARα-regulated transcriptional machinery and modulation of synapse physiology. Hence, PPARα can serve as a novel therapeutic target for schizophrenia.


Asunto(s)
Biomarcadores , PPAR alfa/metabolismo , Esquizofrenia/metabolismo , Adulto , Anciano , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Línea Celular , Susceptibilidad a Enfermedades , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Modelos Moleculares , Mutación , PPAR alfa/antagonistas & inhibidores , PPAR alfa/química , PPAR alfa/genética , Conformación Proteica , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/etiología , Relación Estructura-Actividad
15.
Brain Commun ; 2(2): fcaa145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33225276

RESUMEN

Autism spectrum disorder is a neurodevelopmental disorder characterized by difficulties in social communication and interaction, as well as repetitive and characteristic patterns of behaviour. Although the pathogenesis of autism spectrum disorder is unknown, being overweight or obesity during infancy and low weight at birth are known as risks, suggesting a metabolic aspect. In this study, we investigated adipose tissue development as a pathophysiological factor of autism spectrum disorder by examining the serum levels of adipokines and other metabolic markers in autism spectrum disorder children (n = 123) and typically developing children (n = 92) at 4-12 years of age. Among multiple measures exhibiting age-dependent trajectories, the leptin levels displayed different trajectory patterns between autism spectrum disorder and typically developing children, supporting an adipose tissue-dependent mechanism of autism spectrum disorder. Of particular interest, the levels of fatty acid binding protein 4 (FABP4) were significantly lower in autism spectrum disorder children than in typically developing subjects, at preschool age (4-6 years old: n = 21 for autism spectrum disorder and n = 26 for typically developing). The receiver operating characteristic curve analysis discriminated autism spectrum disorder children from typically developing children with a sensitivity of 94.4% and a specificity of 75.0%. We re-sequenced the exons of the FABP4 gene in a Japanese cohort comprising 659 autism spectrum disorder and 1000 control samples, and identified two rare functional variants in the autism spectrum disorder group. The Trp98Stop, one of the two variants, was transmitted to the proband from his mother with a history of depression. The disruption of the Fabp4 gene in mice evoked autism spectrum disorder-like behavioural phenotypes and increased spine density on apical dendrites of pyramidal neurons, which has been observed in the postmortem brains of autism spectrum disorder subjects. The Fabp4 knockout mice had an altered fatty acid composition in the cortex. Collectively, these results suggest that an 'adipo-brain axis' may underlie the pathophysiology of autism spectrum disorder, with FABP4 as a potential molecule for use as a biomarker.

16.
Hum Genome Var ; 7: 31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082982

RESUMEN

We had previously reported the case of a male patient with schizophrenia, having de-novo balanced translocation. Here, we determined the exact breakpoints in chromosomes 4 and 13. The breakpoint within chromosome 4 was mapped to a region 32.6 kbp upstream of the LDB2 gene encoding Lim domain binding 2. Variant screening in LDB2 revealed a rare novel missense variant in patients with psychiatric disorder.

17.
Ann Clin Transl Neurol ; 7(7): 1117-1131, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32530565

RESUMEN

OBJECTIVE: Neurodevelopmental disorders (NDDs) often associate with epilepsy or craniofacial malformations. Recent large-scale DNA analyses identified hundreds of candidate genes for NDDs, but a large portion of the cases still remain unexplained. We aimed to identify novel candidate genes for NDDs. METHODS: We performed exome sequencing of 95 patients with NDDs including 51 with trigonocephaly and subsequent targeted sequencing of additional 463 NDD patients, functional analyses of variant in vitro, and evaluations of autism spectrum disorder (ASD)-like phenotypes and seizure-related phenotypes in vivo. RESULTS: We identified de novo truncation variants in nine novel genes; CYP1A1, C14orf119, FLI1, CYB5R4, SEL1L2, RAB11FIP2, ZMYND8, ZNF143, and MSX2. MSX2 variants have been described in patients with cranial malformations, and our present patient with the MSX2 de novo truncation variant showed cranial meningocele and partial epilepsy. MSX2 protein is known to be ubiquitinated by an E3 ubiquitin ligase PJA1, and interestingly we found a PJA1 hemizygous p.Arg376Cys variant recurrently in seven Japanese NDD patients; five with trigonocephaly and one with partial epilepsy, and the variant was absent in 886 Japanese control individuals. Pja1 knock-in mice carrying p.Arg365Cys, which is equivalent to p.Arg376Cys in human, showed a significant decrease in PJA1 protein amount, suggesting a loss-of-function effect of the variant. Pja1 knockout mice displayed moderate deficits in isolation-induced ultrasonic vocalizations and increased seizure susceptibility to pentylenetetrazole. INTERPRETATION: These findings propose novel candidate genes including PJA1 and MSX2 for NDDs associated with craniofacial abnormalities and/or epilepsy.


Asunto(s)
Craneosinostosis/genética , Epilepsia/genética , Trastornos del Neurodesarrollo/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Conducta Social , Vocalización Animal/fisiología , Secuenciación del Exoma
18.
Schizophr Bull ; 46(5): 1172-1181, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32346731

RESUMEN

The disturbed integrity of myelin and white matter, along with dysregulation of the lipid metabolism, may be involved in schizophrenia pathophysiology. Considering the crucial role of sphingolipids in neurodevelopment, particularly in oligodendrocyte differentiation and myelination, we examined the role of sphingolipid dynamics in the pathophysiology of schizophrenia. We performed targeted mass spectrometry-based analysis of sphingolipids from the cortical area and corpus callosum of postmortem brain samples from patients with schizophrenia and controls. We observed lower sphingosine-1-phosphate (S1P) levels, specifically in the corpus callosum of patients with schizophrenia, but not in major depressive disorder or bipolar disorder, when compared with the controls. Patient data and animal studies showed that antipsychotic intake did not contribute to the lowered S1P levels. We also found that lowered S1P levels in the corpus callosum of patients with schizophrenia may stem from the upregulation of genes for S1P-degrading enzymes; higher expression of genes for S1P receptors suggested a potential compensatory mechanism for the lowered S1P levels. A higher ratio of the sum of sphingosine and ceramide to S1P, which can induce apoptosis and cell-cycle arrest, was also observed in the samples of patients with schizophrenia than in controls. These results suggest that an altered S1P metabolism may underlie the deficits in oligodendrocyte differentiation and myelin formation, leading to the structural and molecular abnormalities of white matter reported in schizophrenia. Our findings may pave the way toward a novel therapeutic strategy.

19.
Schizophr Res ; 217: 52-59, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30765249

RESUMEN

Dampened prepulse inhibition (PPI) is a consistent observation in psychiatric disorders, including schizophrenia and qualifies as a robust endophenotype for genetic evaluation. Using high PPI C57BL/6NCrlCrlj (B6Nj) and low PPI C3H/HeNCrlCrlj (C3HNj) inbred mouse strains, we have previously reported a quantitative trait locus (QTL) for PPI at chromosome 10 and identified Fabp7 as a candidate gene for regulating PPI and schizophrenia pathogenesis using Fabp7-deficient mice (B6.Cg-Fabp7 KO). Here, considering a possibility of carryover of residual genetic materials from embryonic stem (ES) cells used in generating knockout (KO) mice, we set out to re-address the genotype-phenotype correlation in a uniform genetic background. By generating a new Fabp7 KO mouse model in C57BL/6NCrl (B6N) background using the CRISPR-Cas9 nickase system, we evaluated the impact of Fabp7 ablation on schizophrenia-related behavioral phenotypes. To our surprise, we found no significant differences in PPI or any of the schizophrenia-related behavioral scores, as observed in our previous B6.Cg-Fabp7 KO mice. We identified several C3H/He mouse strain-specific alleles within the interval of chromosome 10-QTL, which are shared with 129/Sv mouse strains. These alleles, derived from 129/Sv ES cells, were retained in the B6.Cg-Fabp7 KO, despite multiple backcrossing and are thought to be responsible for the dampened PPI. In summary, our study demonstrates a precise genotype-phenotype relation for Fabp7 loss-of-function in a uniform B6N background, and raises the necessity of further analysis of the effects of genomic variants flanking the Fabp7 interval on phenotypes.


Asunto(s)
Esquizofrenia , Animales , Proteína de Unión a los Ácidos Grasos 7 , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Esquizofrenia/genética
20.
EMBO Mol Med ; 11(12): e10695, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31657521

RESUMEN

Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as-yet-unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2 S)/polysulfide-producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst-deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst-transgenic (Tg) mice showed deteriorated PPI, suggesting that "sulfide stress" may be linked to PPI impairment. Analysis of human samples demonstrated that the H2 S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst-Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2 S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2 S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2 S/polysulfides production.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Sulfuros/metabolismo , Animales , Electroforesis en Gel Bidimensional , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Epigenómica , Masculino , Ratones , Proteómica , Esquizofrenia/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA