Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786842

RESUMEN

Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition under ambient conditions requires overcoming some challenges to improve stability and efficiency. In this review, we highlight the latest advancements in photonic curing (PC) for perovskite materials, as well as for hole transport layer (HTL) and electron transport layer (ETL) materials. We present how PC parameters can be used to control the optical, electrical, morphological, and structural properties of perovskite HTL and ETL layers. Emphasizing the significance of these advancements for perovskite solar cells could further highlight the importance of this research and underline its essential role in creating more efficient and sustainable solar technology.

2.
ACS Omega ; 8(49): 46794-46803, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107955

RESUMEN

An aerosol jet printing (AJP) process for depositing ruthenium dioxide (RuO2) as a promising material for pH sensing is reported. Graphene oxide (GO) with a large surface area was used for the in situ sol-gel deposition of RuO2 nanoparticles on its surface. The cosolvent ratio and solid loading of the solution are adjusted to form a printable and stable ink. The monodispersed aerosol was atomized on the surface of the screen-printed carbon electrode in order to develop an integrated pH sensor. The RuO2-GO pH sensor demonstrates excellent performance, with a rapid response time of less than 5 s and high sensitivity in the pH range of 4-10. Compared to traditional carbon electrodes, the RuO2-GO sensor shows up to four times higher sensitivity. The increased sensitivity is a result of the consistent attachment of small-crystallized RuO2 nanoparticles onto the surface of GO sheets, leading to a synergistic effect. Thanks to the AJP method as a facile and cost-effective integration technique, the fabricated electrodes can serve as an alternative to traditional rigid pH electrodes for accurate pH measurement.

3.
Sensors (Basel) ; 23(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37631688

RESUMEN

This study presents graphene inks produced through the liquid-phase exfoliation of graphene flakes in water using optimized concentrations of dispersants (gelatin, triton X-100, and tween-20). The study explores and compares the effectiveness of the three different dispersants in creating stable and conductive inks. These inks can be printed onto polyethylene terephthalate (PET) substrates using an aerosol jet printer. The investigation aims to identify the most suitable dispersant to formulate a high-quality graphene ink for potential applications in printed electronics, particularly in developing chemiresistive sensors for IoT applications. Our findings indicate that triton X-100 is the most effective dispersant for formulating graphene ink (GTr), which demonstrated electrical conductivity (4.5 S·cm-1), a high nanofiller concentration of graphene flakes (12.2%) with a size smaller than 200 nm (<200 nm), a low dispersant-to-graphene ratio (5%), good quality as measured by Raman spectroscopy (ID/IG ≈ 0.27), and good wettability (θ ≈ 42°) over PET. The GTr's ecological benefits, combined with its excellent printability and good conductivity, make it an ideal candidate for manufacturing chemiresistive sensors that can be used for Internet of Things (IoT) healthcare and environmental applications.

4.
Angew Chem Int Ed Engl ; 62(40): e202309003, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37572307

RESUMEN

We explore a series of furan-based non-fullerene acceptors and report their optoelectronic properties, solid-state packing, photodegradation mechanism and application in photovoltaic devices. Incorporating furan building blocks leads to the expected enhanced backbone planarity, reduced band gap and red-shifted absorption of these acceptors. Still, their position in the molecule is critical for stability and device performance. We found that the photodegradation of these acceptors originates from two distinct pathways: electrocyclic photoisomerization and Diels-Alder cycloaddition of singlet oxygen. These mechanisms are of general significance to most non-fullerene acceptors, and the photostability depends strongly on the molecular structure. Placement of furans next to the acceptor termini leads to better photostability, well-balanced hole/electron transport, and significantly improved device performance. Methylfuran as the linker offers the best photostability and power conversion efficiency (>14 %), outperforming all furan-based acceptors reported to date and all indacenodithiophene-based acceptors. Our findings show the possibility of photostable furan-based alternatives to the currently omnipresent thiophene-based photovoltaic materials.

5.
Sci Rep ; 12(1): 9672, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690637

RESUMEN

A fast response time (0.1 s) magnetic field sensor has been demonstrated utilizing a photonic crystal fiber with nano-size air holes infiltrated with polyethylene glycol based magnetic fluid. The effect of magnetic nanoparticles concentration in the fluid on the magneto-optical sensor performance and its dependence under varying magnetic-field loads was investigated in detail. In particular, the sensor response was analytically modelled with a Langevin function with a good fit (R[Formula: see text]0.996). A threshold sensing point as low as 20 gauss was recorded and a detection range of 0-350 gauss was demonstrated by means of optical transmission measurements. The experimental results were validated by theory using a waveguide light transmission model fed by finite-element method simulations of the principal guided modes in the infiltrated fiber sensor. The simple interrogation scheme, high sensitivity and quick response time makes the proposed hybrid fiber-optic magneto-fluidic probe a promising platform for novel biochemical sensing applications.

6.
ACS Appl Mater Interfaces ; 14(14): 16185-16196, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352950

RESUMEN

Sufficient sunlight absorption and exciton generation are critical for developing efficient nonfullerene organic solar cells (OSCs). In this work, polyelectrolyte polystyrenesulfonate (PSS)-coated plasmonic gold nanorods (GNRs@PSS) were incorporated, for the first time, into the inverted nonfullerene OSCs as rear interfacial modifiers to improve sunlight absorption and charge generation via the near-field plasmonic and backscattering effects. The plasmonic GNRs effectively improved the sunlight absorption and enhanced the charge generation. Meanwhile, the negatively charged PSS shell ensured the uniform dispersion of the GNRs on the surface of the photoactive layer, optimized the interfacial contact, and further promoted the hole transport to the electrode. These concerted synergistic effects augmented the efficiency (10.11%) by nearly 20% relative to the control device (8.47%). Remarkably, the ultrathin (∼2.2 nm) organic layer on the surface of GNRs was closely examined by acquiring the carbon contrast image through energy-filtered transmission electron microscopy (EF-TEM), which clearly confirmed the coating uniformity from the side to end-cap of GNRs. The surface plasmon resonance (SPR) effect of the GNRs@PSS on the surface of the photoactive layer was unprecedentedly mapped by photoinduced force microscopy (PiFM) under the illumination of a tunable wavelength supercontinuum laser mimicking sunlight. Furthermore, investigations into the effect of size, surface coverage, and incorporation location of GNRs@PSS on the performance of OSCs revealed that the appropriate design and incorporation of the plasmonic nanostructures are crucial, otherwise the performance can be decreased, as evidenced in the case of front interface integration.

7.
Small Methods ; 6(1): e2100916, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35041289

RESUMEN

It is highly desired to develop advanced characterization techniques to explore the 3D nanoscale morphology of the complicated blend film of ternary organic solar cells (OSCs). Here, ternary OSCs are constructed by incorporating the nonfullerene acceptor perylenediimide (PDI)-diketopyrrolopyrrole (DPP)-PDI and their morphology is characterized in depth to understand the performance variation. In particular, photoinduced force microscopy (PiFM) coupled with infrared laser spectroscopy is conducted to qualitatively study the distribution of donor and acceptors in the blend film by chemical identification and to quantitatively probe the segmentation of domains and the domain size distribution after PDI-DPP-PDI acceptor incorporation by PiFM imaging and data processing. In addition, the energy-filtered transmission electron microscopy with energy loss spectra is utilized to visualize the nanoscale morphology of ultrathin cross-sections in the configuration of the real ternary device for the first time in the field of photovoltaics. These measurements allow to "view" the surface and cross-sectional morphology and provide strong evidence that the PDI-DPP-PDI acceptor can suppress the aggregation of the fullerene molecules and generate the homogenous morphology with a higher-level of the molecularly mixed phase, which can prevent the charge recombination and stabilize the morphology of photoactive layer.

8.
Angew Chem Int Ed Engl ; 60(47): 24833-24837, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34506067

RESUMEN

Herein, we elucidate the photodegradation pathway of A-D-A-type non-fullerene acceptors for organic photovoltaics. Using IT-4F as a benchmark example, we isolated the photoproducts and proved them isomers of IT-4F formed by a 6-e electrocyclic reaction between the dicyanomethylene unit and the thiophene ring, followed by a 1,5-sigmatropic hydride shift. This photoisomerization was accelerated under inert conditions, as explained by DFT calculations predicting a triplet-mediated reaction path (quenchable by oxygen). Adding controlled amounts of the photoproduct P1 to PM6:IT-4F bulk heterojunction cells led to a progressive decrease in photocurrent and fill factor attributed to its poor absorption and charge transport properties. The reaction is a general photodegradation pathway for a series of A-D-A molecules with 1,1-dicyanomethylene-3-indanone termini, and its rate varies with the structure of the donor and acceptor moiety.

9.
Membranes (Basel) ; 10(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202720

RESUMEN

A stable and magnetic graphene oxide (GO) foam-polyethyleneimine-iron nanoparticle (GO-PEI-FeNPs) composite has been fabricated for removal of endocrine disruptors-bisphenol A, progesterone and norethisterone-from aqueous solution. The foam with porous and hierarchical structures was synthesized by reduction of graphene oxide layers coupled with co-precipitation of iron under a hydrothermal system using polyethyleneimine as a cross linker. The presence of magnetic iron nanoparticles facilitates the separation process after decontamination. The foam was fully characterized by surface and structural scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The foam exhibits a high adsorption capacity, and the maximum adsorption percentages are 68%, 49% and 80% for bisphenol A, progesterone and norethisterone, respectively. The adsorption process of bisphenol A is explained according to the Langmuir model, whereas the Freundlich model was used for progesterone and norethisterone adsorption.

10.
Sci Rep ; 10(1): 13612, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788744

RESUMEN

The integration of graphene materials into electrochemical biosensing platforms has gained significant interest in recent years. Bulk quantities of graphene can be synthesized by oxidation of graphite to graphite oxide and subsequent exfoliation to graphene oxide (GO). However, the size of the resultant GO sheets changes from the parent graphite yielding a polydispersed solution of sizes ranging from a few nanometers to tens of micrometers. Here, we investigate the direct effect of GO sheets sizes on biosensor performance. We separated different GO sheets sizes, and we characterized them via atomic force, scanning electron, Raman and X-ray photoelectron spectroscopies and solid state nuclear magnetic resonance (NMR). As proof of concept, the sensing performance of these GO samples was probed using a well-known ssDNA aptasensor against microcystin-LR toxin and an immunosensor against ß-lactoglobulin. The resulting aptasensors and immunosensors are fabricated by using covalent attachment and physical adsorption. We found that the aptasensors fabricated using physical adsorption, the binding signal variation was dramatically increased with increasing the GO sheet size. In contrast, for the aptasensor fabricated using covalent immobilization, the binding signal variation decreased with increasing GO sheet size. However, for the ß-lactoglobulin immunosensors, the optimum signals were observed at intermediate GO sheet size. GO sheet size could enhance or inhibit the sensitivity of the graphene-based electrochemical sensors. Our results demonstrate that controlling the size of GO sheets may have a profound impact in specific biosensing applications.

11.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605210

RESUMEN

Headed for developing minimalistic strategies to produce graphene@metal hybrids for electronics on a larger scale, we discovered that graphene oxide (GO)-metal oxide (MO) hybrids are formed spontaneously in water at room temperature in the presence of nothing else than graphene oxide itself and metal ions. Our observations show metal oxide nanoparticles decorating the surface of graphene oxide with particle diameter in the range of 10-40 nm after only 1 h of mixing. Their load ranged from 0.2% to 6.3% depending on the nature of the selected metal. To show the generality of the reactivity of GO with different ions in standard conditions, we prepared common hybrids with GO and tin, iron, zinc, aluminum and magnesium. By means of carbon-13 solid-state nuclear magnetic resonance using magic angle spinning, we have found that graphene oxide is also moderately reduced at the same time. Our method is powerful and unique because it avoids the use of chemicals and heat to promote the coprecipitation and the reduction of GO. This advantage allows synthesizing GO@MO hybrids with higher structural integrity and purity with a tunable level of oxidization, in a faster and greener way.

12.
Sensors (Basel) ; 20(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192059

RESUMEN

An ionization sensor based on suspended carbon nanotubes (CNTs) was presented. A suspended CNT beam was fabricated by a low-temperature surface micromachining process using SU8 photoresist as the sacrificial layer. Application of a bias to the CNT beam generated very high non-linear electric fields near the tips of individual CNTs sufficient to ionize target gas molecules and initiate a breakdown current. The sensing mechanism of the CNT ionization sensor was discussed. The sensor response was tested in air, nitrogen, argon, and helium ambients. Each gas demonstrated a unique breakdown signature. Further, the sensor was tested with gaseous mixtures. The sensor exhibited good long-term stability and had comparable performance to other reported CNT-based ionization sensors in literature, which use high-temperature vapor deposition methods to grow CNTs. The sensor notably allowed for lower ionization voltages due to its reduced ionization gap size.

13.
J Org Chem ; 85(1): 52-61, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31380639

RESUMEN

The facile synthesis of a series of benzodithiophene (BDT)- and indacenodithiophene (IDT)-based A-D-A oligomers with different end groups is reported, and their properties are studied by optical spectroscopy, electrochemistry, and density functional theory calculations. The permutation of central and terminal units tunes the optoelectronic properties and photovoltaic device characteristics in a predictable way, aiding in the rational design of small molecule semiconducting materials. Among the three rhodanine-derived terminal groups, N-alkylthiazolonethione revealed the strongest electron-withdrawing character, resulting in the lowest band gap, the highest stability, and the best photovoltaic device performance. The crystallographic analysis of two IDT derivatives yielded a highly unusual three-dimensional packing of the conjugated backbone, which is likely responsible for the remarkable photovoltaic performance of such A-D-A semiconductors.

14.
Sensors (Basel) ; 19(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736455

RESUMEN

A humidity sensor using suspended carbon nanotubes (CNTs) was fabricated using a low-temperature surface micromachining process. The CNTs were functionalized with carboxylic acid groups that facilitated the interaction of water vapor with the CNTs. The humidity sensor showed a response time of 12 s and a recovery time of 47 s, along with superior hysteresis and stable performance. The hysteresis curve area of the suspended structure is 3.6, a 3.2-fold reduction in comparison to the non-suspended structure. A comparative study between suspended and non-suspended devices highlights the advantages of using a suspended architecture.

15.
J Refract Surg ; 35(1): 40-47, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30633786

RESUMEN

PURPOSE: To assess the effectiveness of small incision lenticule extraction (SMILE) as a function of the astigmatism level and type. METHODS: A total of 102 right eyes were included in this study. Refractive astigmatism and corneal astigmatism measured with Scheimpflug technology were retrieved from the preoperative visit and the 3-month follow-up visit. Patients were split into three groups according to the preoperative refractive astigmatism (0.50, 0.75 to 1.25, and 1.50 diopters [D] or greater) and the effectiveness among each group was evaluated according to the with-the-rule (WTR), against-the-rule (ATR), and oblique classifications. The standard Alpins method was used for the analysis. RESULTS: Resultant astigmatism was not associated with its preoperative classification when the total sample was considered, but a significant association emerged between the presence of resultant astigmatism and its preoperative classification in the 1.50 D or greater group. The magnitude of error was significantly lower in the WTR (median: -0.30 D) than in the oblique and ATR astigmatism groups, resulting in a coefficient of adjustment of 1.13 for WTR astigmatism of 1.50 D or greater but not for the other types. CONCLUSIONS: Astigmatism correction with SMILE is predictable for astigmatism lower than 1.50 D without the need to apply a correction. However, higher undercorrection is present in WTR astigmatism of 1.50 D or greater. [J Refract Surg. 2019;35(1):40-47.].


Asunto(s)
Astigmatismo/cirugía , Sustancia Propia/cirugía , Cirugía Laser de Córnea/métodos , Miopía/cirugía , Adulto , Astigmatismo/fisiopatología , Córnea/fisiopatología , Topografía de la Córnea , Femenino , Humanos , Masculino , Microcirugia , Persona de Mediana Edad , Miopía/fisiopatología , Refracción Ocular , Estudios Retrospectivos , Resultado del Tratamiento , Agudeza Visual , Adulto Joven
16.
Small ; 15(7): e1804671, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30637957

RESUMEN

High efficiency, excellent stability, and air processability are all important factors to consider in endeavoring to push forward the real-world application of organic solar cells. Herein, an air-processed inverted photovoltaic device built upon a low-bandgap, air-stable, phenanthridinone-based ter-polymer (C150 H218 N6 O6 S4 )n (PDPPPTD) and [6,6]-phenyl-C61 -butyric acid methyl ester (PC61 BM) without involving any additive engineering processes yields a high efficiency of 6.34%. The PDPPPTD/PC61 BM devices also exhibit superior thermal stability and photo-stability as well as long-term stability in ambient atmosphere without any device encapsulation, which show less performance decay as compared to most of the reported organic solar cells. In view of their great potential, solvent additive engineering via adding p-anisaldehyde (AA) is attempted, leading to a further improved efficiency of 7.41%, one of the highest efficiencies for all air-processed and stable organic photovoltaic devices. Moreover, the device stability under different ambient conditions is also further improved with the AA additive engineering. Various characterizations are conducted to probe the structural, morphology, and chemical information in order to correlate the structure with photovoltaic performance. This work paves a way for developing a new generation of air-processable organic solar cells for possible commercial application.

17.
Sensors (Basel) ; 18(5)2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29786661

RESUMEN

A room temperature microfabrication technique using SU8, an epoxy-based highly functional photoresist as a sacrificial layer, is developed to obtain suspended aligned carbon nanotube beams. The humidity-sensing characteristics of aligned suspended single-walled carbon nanotube films are studied. A comparative study between suspended and non-suspended architectures is done by recording the resistance change in the nanotubes under humidity. For the tests, the humidity was varied from 15% to 98% RH. A comparative study between suspended and non-suspended devices shows that the response and recovery times of the suspended devices was found to be almost 3 times shorter than the non-suspended devices. The suspended devices also showed minimal hysteresis even after 10 humidity cycles, and also exhibit enhanced sensitivity. Repeatability tests were performed by subjecting the sensors to continuous humidification cycles. All tests reported here have been performed using pristine non-functionalized nanotubes.

18.
ACS Appl Mater Interfaces ; 10(7): 6498-6504, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29401370

RESUMEN

Performance of bulk heterojunction polymer solar cells (PSCs) highly relies on the morphology of the photoactive layer involving conjugated polymers and fullerene derivatives as donors and acceptors, respectively. Herein, butylamine was found to be able to optimize the morphology of the donor/acceptor (D/A) film composed of a blend of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). Compared to the commonly used alkane dithiols and halogenated additives with high boiling points, butylamine has a much lower boiling point between 77 and 79 °C, and it is also much "greener". A specific interaction between butylamine and PCBM was demonstrated to account for the morphology improvement. Essentially, butylamine can selectively dissolve PCBM in the P3HT:PCBM blend and facilitate the diffusion of PCBM in the film fabrication processes. Atomic force microscopy and X-ray photoelectron spectroscopy investigations confirmed the formation of the P3HT-enriched top surface and the abundance of PCBM at the bottom side, i.e., the formation of vertical phase segregation, as a consequence of the specific PCBM-butylamine interaction. The D/A film with inhomogeneously distributed D and A components in the vertical film direction, with more P3HT at the hole extraction side and more PCBM at the electron extraction side, enables more efficient charge extraction in the D/A film, reflected by the largely enhanced fill factor. The power conversion efficiency of devices reached 4.03 and 4.61%, respectively, depending on the thickness of the D/A film, and these are among the best values reported for P3HT:PCBM-based devices. As compared to the devices fabricated without the introduction of butylamine under otherwise the same processing conditions, they represented 19.6 and 21.6% improvement in the efficiency, respectively. The discovery of butylamine as a new, effective additive in enhancing the performance of PSCs strongly suggests that the differential affinity of additives toward donors and acceptors likely plays a more important role in morphology optimization than their boiling point, different from what was reported previously. The finding provides useful information for realizing large-area PSC fabrication, where a "greener" additive is always preferred.

19.
ACS Appl Mater Interfaces ; 9(31): 26257-26267, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28718290

RESUMEN

Due to the practical applications of polymer solar cells (PSCs), their stability recently has received increasing attention. Herein, a new strategy was developed to largely enhance the long-term and thermal stability of PSCs in air with a relatively high humidity of 50-60% without any encapsulation. In this strategy, semiconductor PbS/CdS core/shell quantum dots (QDs) were incorporated into the photoactive blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). By replacing the initial ligands of oleic acid with halide ligands on the surface of PbS/CdS QDs via solution-phase ligand exchange, we were able to form unusual, continuous QD networks in the film of P3HT:PCBM, which effectively stabilized the photoactive layer. Air-processed PSCs based on the stabilized P3HT:PCBM film showed excellent long-term stability under high humidity, providing over 3% of power conversion efficiency (PCE) simultaneously. Around 91% of pristine PCE was retained after 30 days storage in high-humidity air without encapsulation. This constitutes a remarkable improvement compared to ∼53% retained PCE for the QD-free devices, which can be ascribed to the efficient suppression of both PCBM aggregation and oxidation of the thiophene ring in P3HT, thanks to the formation of robust QD networks. Furthermore, the presence of QD networks was able to enhance the stability of the P3HT:PCBM film against thermal stress/oxidation under high-humidity environment (50-60%) as well. The device kept 60% of pristine PCE after thermal treatment for 12 h at 85 °C in air, which is more than twice higher than that for the QD-free device. To the best of our knowledge, the work represents the first unambiguous demonstration of the formation of QD networks in the photoactive layer and of their important contribution to the stability of PSCs. This strategy is highly promising for other fullerene-based PSCs and opens a new avenue toward achieving PSCs with high PCE and excellent stability.

20.
Sci Total Environ ; 599-600: 1903-1911, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28545217

RESUMEN

Birds have been used intensively as biomonitors of halogenated flame retardants (HFRs), and several studies have reported elevated tissue concentrations and inter-individual variability for these contaminants. While diet is known to be an important exposure pathway for HFRs in birds, it has been suggested that exposure through air may represent an underestimated source of HFRs for certain species. However, a method was not available for measuring the atmospheric exposure of individual birds to HFRs or other semi-volatile contaminants. The goal of this study was to develop a bird-borne passive air sampler (PAS) enabling the determination of individual atmospheric exposure to gas- and particle-phase HFRs using the ring-billed gull (Larus delawarensis) nesting in the Montreal area (QC, Canada). The new miniaturized elliptical-shaped PAS (mean weight: 2.72g) was tested using two sorbent types during three exposure periods (one, two and three weeks). Results showed that PAS using polyurethane foam (PUF) combined with a glass fiber filter collected all major polybrominated diphenyl ethers (PBDEs) and exhibited better performance for collecting highly hydrophobic DecaBDE mixture congeners compared to the PAS using polydimethylsiloxane (PDMS). Emerging HFRs including hexabromobenzene, Dechlorane 604 Component B, and Dechlorane plus (DP) isomers also were sampled by the PUF-based PAS. Sampling rates for most HFRs were comparable between the three exposure periods. This novel bird-borne PAS provides valuable information on the non-dietary exposure of free-ranging birds to HFRs.


Asunto(s)
Contaminantes Atmosféricos/análisis , Charadriiformes , Monitoreo del Ambiente/instrumentación , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Animales , Quebec
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA