Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Imaging ; 9(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38132689

RESUMEN

Brain age prediction from 3D MRI volumes using deep learning has recently become a popular research topic, as brain age has been shown to be an important biomarker. Training deep networks can be very computationally demanding for large datasets like the U.K. Biobank (currently 29,035 subjects). In our previous work, it was demonstrated that using a few 2D projections (mean and standard deviation along three axes) instead of each full 3D volume leads to much faster training at the cost of a reduction in prediction accuracy. Here, we investigated if another set of 2D projections, based on higher-order statistical central moments and eigenslices, leads to a higher accuracy. Our results show that higher-order moments do not lead to a higher accuracy, but that eigenslices provide a small improvement. We also show that an ensemble of such models provides further improvement.

2.
Brain Sci ; 13(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37759930

RESUMEN

Using 3D CNNs on high-resolution medical volumes is very computationally demanding, especially for large datasets like UK Biobank, which aims to scan 100,000 subjects. Here, we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of 3D volumes leads to reasonable test accuracy (mean absolute error of about 3.5 years) when predicting age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 20-50 s using a single GPU, which is two orders of magnitude faster than a small 3D CNN. This speedup is explained by the fact that 3D brain volumes contain a lot of redundant information, which can be efficiently compressed using 2D projections. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.

3.
Diagnostics (Basel) ; 13(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37685311

RESUMEN

Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of attention during the last 10 years, and recently, different deep learning approaches have been used. Despite this fact, there has not been any investigation regarding how 3D augmentation can help to create larger datasets, required to train deep networks with millions of parameters. In this study, deep learning was applied to derivatives from resting state functional MRI data, to investigate how different 3D augmentation techniques affect the test accuracy. Specifically, resting state derivatives from 1112 subjects in ABIDE (Autism Brain Imaging Data Exchange) preprocessed were used to train a 3D convolutional neural network (CNN) to classify each subject according to presence or absence of autism spectrum disorder. The results show that augmentation only provide minor improvements to the test accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA