Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurochem ; 157(4): 872-888, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32772367

RESUMEN

Bimolecular fluorescence complementation (BiFC) was introduced a decade ago as a method to monitor alpha-synuclein (α-syn) oligomerization in intact cells. Since then, several α-syn BiFC cellular assays and animal models have been developed based on the assumption that an increase in the fluorescent signal correlates with increased α-syn oligomerization or aggregation. Despite the increasing use of these assays and models in mechanistic studies, target validation and drug screening, there have been no reports that (1) validate the extent to which the BiFC fluorescent signal correlates with α-syn oligomerization at the biochemical level; (2) provide a structural characterization of the oligomers and aggregates formed by the BiFC. To address this knowledge gap, we first analysed the expression level and oligomerization properties of the individual constituents of α-syn-Venus, one of the most commonly used BiFC systems, in HEK-293 & SH-SY5Y cells from three different laboratories using multiple biochemical approaches and techniques. Next, we investigated the biochemical and aggregation properties of α-syn upon co-expression of both BiFC fragments. Our results show that (1) the C-terminal-Venus fused to α-syn (α-syn-Vc) is present in much lower abundance than its counterpart with N-terminal-Venus fused to α-syn (Vn-α-syn); (2) Vn-α-syn exhibits a high propensity to form oligomers and higher-order aggregates; and (3) the expression of either or both fragments does not result in the formation of α-syn fibrils or cellular inclusions. Furthermore, our results suggest that only a small fraction of Vn-α-syn is involved in the formation of the fluorescent BiFC complex and that some of the fluorescent signal may arise from the association or entrapment of α-syn-Vc in Vn-α-syn aggregates. The fact that the N-terminal fragment exists predominantly in an aggregated state also indicates that one must exercise caution when using this system to investigate α-syn oligomerization in cells or in vivo. Altogether, our results suggest that cellular and animal models of oligomerization, aggregation and cell-to-cell transmission based on the α-syn BiFC systems should be thoroughly characterized at the biochemical level to ensure that they reproduce the process of interest and measure what they are intended to measure.


Asunto(s)
Imagen Óptica/métodos , Agregación Patológica de Proteínas , alfa-Sinucleína , Animales , Células HEK293 , Humanos , Modelos Animales , Agregado de Proteínas
2.
Elife ; 82019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31552823

RESUMEN

Transient oligomers are commonly formed in the early stages of amyloid assembly. Determining the structure(s) of these species and defining their role(s) in assembly is key to devising new routes to control disease. Here, using a combination of chemical kinetics, NMR spectroscopy and other biophysical methods, we identify and structurally characterize the oligomers required for amyloid assembly of the protein ΔN6, a truncation variant of human ß2-microglobulin (ß2m) found in amyloid deposits in the joints of patients with dialysis-related amyloidosis. The results reveal an assembly pathway which is initiated by the formation of head-to-head non-toxic dimers and hexamers en route to amyloid fibrils. Comparison with inhibitory dimers shows that precise subunit organization determines amyloid assembly, while dynamics in the C-terminal strand hint to the initiation of cross-ß structure formation. The results provide a detailed structural view of early amyloid assembly involving structured species that are not cytotoxic.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Multimerización de Proteína , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Fenómenos Biofísicos , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Unión Proteica
3.
Nat Rev Mol Cell Biol ; 19(12): 755-773, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30237470

RESUMEN

The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-ß structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.


Asunto(s)
Amiloide/metabolismo , Amiloide/fisiología , Amiloide/ultraestructura , Enfermedad de Alzheimer/fisiopatología , Amiloidosis/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Enfermedad de Parkinson/fisiopatología , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatología
4.
J Biol Chem ; 293(22): 8554-8568, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29650757

RESUMEN

As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide-associated complex (NAC) is a ribosome-associated chaperone that is important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI-MS), limited proteolysis, NMR, and cross-linking, we analyzed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates with unrelated sequences and structures, independently of actively translating ribosomes.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/química , Péptidos/metabolismo , Biosíntesis de Proteínas , Sinucleínas/química , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Chaperonas Moleculares/metabolismo , Péptidos/química , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Sinucleínas/metabolismo
5.
Protein Sci ; 27(7): 1205-1217, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29417650

RESUMEN

Protein aggregation is linked with the onset of several neurodegenerative disorders, including Parkinson's disease (PD), which is associated with the aggregation of α-synuclein (αSyn). The structural mechanistic details of protein aggregation, including the nature of the earliest protein-protein interactions, remain elusive. In this study, we have used single molecule force spectroscopy (SMFS) to probe the first dimerization events of the central aggregation-prone region of αSyn (residues 71-82) that may initiate aggregation. This region has been shown to be necessary for the aggregation of full length αSyn and is capable of forming amyloid fibrils in isolation. We demonstrate that the interaction of αSyn71-82 peptides can be studied using SMFS when inserted into a loop of protein L, a mechanically strong and soluble scaffold protein that acts as a display system for SMFS studies. The corresponding fragment of the homolog protein γ-synuclein (γSyn), which has a lower aggregation propensity, has also been studied here. The results from SMFS, together with native mass spectrometry and aggregation assays, demonstrate that the dimerization propensity of γSyn71-82 is lower than that of αSyn71-82 , but that a mixed αSyn71-82 : γSyn71-82 dimer forms with a similar propensity to the αSyn71-82 homodimer, slowing amyloid formation. This work demonstrates the utility of a novel display method for SMFS studies of aggregation-prone peptides, which would otherwise be difficult to study.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Imagen Individual de Molécula/métodos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Agregado de Proteínas , Unión Proteica , Dominios Proteicos , Pliegue de Proteína
6.
Biomolecules ; 7(4)2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28937655

RESUMEN

Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Amiloidosis/metabolismo , Péptidos/química , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloidosis/patología , Humanos , Péptidos/metabolismo
7.
Essays Biochem ; 60(2): 173-180, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27744333

RESUMEN

Proteostasis refers to the regulation of the cellular concentration, folding, interactions and localization of each of the proteins that comprise the proteome. One essential element of proteostasis is the disposal of misfolded proteins by the cellular pathways of protein degradation. Lysosomes are an important site for the degradation of misfolded proteins, which are trafficked to this organelle by the pathways of macroautophagy, chaperone-mediated autophagy and endocytosis. Conversely, amyloid diseases represent a failure in proteostasis, in which proteins misfold, forming amyloid deposits that are not degraded effectively by cells. Amyloid may then exacerbate this failure by disrupting autophagy and lysosomal proteolysis. However, targeting the pathways that regulate autophagy and the biogenesis of lysosomes may present approaches that can rescue cells from the deleterious effects of amyloidogenic proteins.


Asunto(s)
Células/metabolismo , Homeostasis , Lisosomas/metabolismo , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Proteolisis , Amiloide/metabolismo , Animales , Humanos
8.
Sci Rep ; 6: 21078, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26867957

RESUMEN

Structure determination for amyloid fibrils presents many challenges due to the high variability exhibited by fibrils and heterogeneous morphologies present, even in single samples. Mass per unit length (MPL) estimates can be used to differentiate amyloid fibril morphologies and provide orthogonal evidence for helical symmetry parameters determined by other methods. In addition, MPL data can provide insight on the arrangement of subunits in a fibril, especially for more complex fibrils assembled with multiple parallel copies of the asymmetric unit or multiple twisted protofilaments. By detecting only scattered electrons, which serve as a relative measure of total scattering, and therefore protein mass, dark field imaging gives an approximation of the total mass of protein present in any given length of fibril. When compared with a standard of known MPL, such as Tobacco Mosaic Virus (TMV), MPL of the fibrils in question can be determined. The program suite MpUL-multi was written for rapid semi-automated processing of TB-TEM dark field data acquired using this method. A graphical user interface allows for simple designation of fibrils and standards. A second program averages intensities from multiple TMV molecules for accurate standard determination, makes multiple measurements along a given fibril, and calculates the MPL.


Asunto(s)
Amiloide/química , Amiloide/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Humanos , Microscopía Electrónica de Transmisión , Peso Molecular
9.
Nat Chem Biol ; 12(2): 94-101, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26656088

RESUMEN

Protein aggregation underlies an array of human diseases, yet only one small-molecule therapeutic targeting this process has been successfully developed to date. Here, we introduce an in vivo system, based on a ß-lactamase tripartite fusion construct, that is capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid ß) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split ß-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of islet amyloid polypeptide aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation.


Asunto(s)
Bioensayo/métodos , Agregación Patológica de Proteínas , Péptidos beta-Amiloides/metabolismo , Western Blotting , Curcumina/farmacología , Dopamina/química , Dopamina/farmacología , Humanos , Microscopía Electrónica de Transmisión , Unión Proteica/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray , beta-Lactamasas/química
10.
J Biol Chem ; 289(52): 35781-94, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25378395

RESUMEN

Fragmentation of amyloid fibrils produces fibrils that are reduced in length but have an otherwise unchanged molecular architecture. The resultant nanoscale fibril particles inhibit the cellular reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a substrate commonly used to measure cell viability, to a greater extent than unfragmented fibrils. Here we show that the internalization of ß2-microglobulin (ß2m) amyloid fibrils is dependent on fibril length, with fragmented fibrils being more efficiently internalized by cells. Correspondingly, inhibiting the internalization of fragmented ß2m fibrils rescued cellular MTT reduction. Incubation of cells with fragmented ß2m fibrils did not, however, cause cell death. Instead, fragmented ß2m fibrils accumulate in lysosomes, alter the trafficking of lysosomal membrane proteins, and inhibit the degradation of a model protein substrate by lysosomes. These findings suggest that nanoscale fibrils formed early during amyloid assembly reactions or by the fragmentation of longer fibrils could play a role in amyloid disease by disrupting protein degradation by lysosomes and trafficking in the endolysosomal pathway.


Asunto(s)
Amiloide/fisiología , Lisosomas/metabolismo , Proteolisis , Microglobulina beta-2/fisiología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Nanopartículas/metabolismo , Oxidación-Reducción , Permeabilidad , Transporte de Proteínas
11.
ChemMedChem ; 7(4): 578-86, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22275299

RESUMEN

Malaria is one of the world's most devastating parasitic diseases, causing almost one million deaths each year. Growing resistance to classical antimalarial drugs, such as chloroquine, necessitates the discovery of new therapeutic agents for successful control of this global disease. Here, we report the synthesis of some 6-halo-ß-carbolines as analogues of the potent antimalarial natural product, manzamine A, retaining its heteroaromatic core whilst providing compounds with much improved synthetic accessibility. Two compounds displayed superior activity to chloroquine itself against a resistant Plasmodium falciparum strain, identifying them as promising leads for future development. Furthermore, in line with previous reports of similarities in antimalarial and antiprion effects of aminoaryl-based antimalarial agents, the 1-amino-ß-carboline libraries were also found to possess significant bioactivity against a prion-infected cell line.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Carbolinas/síntesis química , Plasmodium falciparum/efectos de los fármacos , Carbazoles/química , Carbolinas/farmacología , Línea Celular , Cloroquina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Microbiana , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Priones/antagonistas & inhibidores , Relación Estructura-Actividad
12.
Eur J Med Chem ; 46(9): 4125-32, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21726921

RESUMEN

A series of highly potent indole-3-glyoxylamide based antiprion agents was previously characterized, focusing on optimization of structure-activity relationship (SAR) at positions 1-3 of the indole system. New libraries interrogating the SAR at indole C-4 to C-7 now demonstrate that introducing electron-withdrawing substituents at C-6 may improve biological activity by up to an order of magnitude, and additionally confer higher metabolic stability. For the present screening libraries, both the degree of potency and trends in SAR were consistent across two cell line models of prion disease, and the large majority of compounds showed no evidence of toxic effects in zebrafish. The foregoing observations thus make the indole-3-glyoxylamides an attractive lead series for continuing development as potential therapeutic agents against prion disease.


Asunto(s)
Indoles/química , Indoles/farmacología , Microsomas/efectos de los fármacos , Priones/efectos de los fármacos , Animales , Línea Celular , Descubrimiento de Drogas , Indoles/efectos adversos , Relación Estructura-Actividad , Pez Cebra
13.
Langmuir ; 26(14): 12095-103, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20481467

RESUMEN

The paper describes immobilization methods of bacteriophage P22 and tailspike gp9 proteins isolated from P22 on atomic force microscope (AFM) probes. The paper also reports single molecule force spectroscopy (SMFS) using AFM of the immobilized P22 (or gp9) interactions with substrate-supported O-antigenic lipopolysaccharides (LPS) bilayers. LPS covers the outer membrane of gram-negative bacteria, such as Salmonella typhimurium. Evidence from AFM imaging and SMFS shows that immobilized P22 (or gp9) are capable of strong and multivalent binding to supported LPS. The most common rupture forces between P22 and LPS were identified to be 72, 130, 206, and 279 pN at force loading rate of 12,000 pN/s. The quantized unbinding force was found to decrease with decreasing force loading rate as predicted by the Bell model. By fitting the force data with the Bell model, an energy barrier of 55 kJ/mol was obtained. Evidence is also provided that demonstrates the resilience of phage to pH and temperature fluctuation as well as dehydration/rehydration cycles. The biospecific interactions between P22 and the LPS are relevant to cell infection, inflammation, cancer progression and metastasis, food safety, pharmaceuticals, and biosensor development.


Asunto(s)
Bacteriófago P22/metabolismo , Antígenos O/metabolismo , Adsorción , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Cinética , Microscopía de Fuerza Atómica , Temperatura , Proteínas Virales/química , Proteínas Virales/metabolismo
14.
Surf Sci ; 602(7): 1392-1400, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19461940

RESUMEN

Phages are promising alternatives to antibodies as the biorecognition element in a variety of biosensing applications. In this study, a monolayer of bacteriophage P22 whose tailspike proteins specifically recognize Salmonella serotypes was covalently bound to glass substrates through a bifunctional cross linker 3-aminopropyltrimethoxysilane. The specific binding of Salmonella typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay and atomic force microscopy. Escherichia coli and a Gram-positive bacterium Listeria monocytogenes were also studied as control bacteria. The P22 particles show strong binding affinity to Salmonella typhimurium. In addition, the dried P22 monolayer maintained 50% binding capacity to Salmonella typhimurium after a one-week storage time. This is a promising method to prepare phage monolayer coatings on surface plasmon resonance and acoustic biosensor substrates in order to utilize the nascent phage display technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA