Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504517

RESUMEN

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E2 , Modelos Animales de Enfermedad , Terapia Genética , Ratones Transgénicos , Microglía , Placa Amiloide , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Ratones , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Microglía/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores
2.
Acta Neuropathol ; 147(1): 32, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319380

RESUMEN

Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aß) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aß leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aß and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aß binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aß generates a FRET signal with transmembrane protein 97. Further, Aß generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aß/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aß. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aß when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aß including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aß in human Alzheimer's disease brain where it may mediate synaptotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Proteínas de la Membrana , Animales , Humanos , Ratones , Péptidos beta-Amiloides , Encéfalo , Sinapsis , Proteínas de la Membrana/metabolismo
3.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645718

RESUMEN

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do they have a later age of onset, milder clinical course, and less severe neuropathological findings than others with Alzheimer disease. The contrast is especially stark in comparison to the phenotype associated with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, as well as a more aggressive clinical course and notably more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Even one APOE ε2 allele improves phenotype, but it is uncertain if that is due to the replacement of a more toxic allele by APOE ε2, or if APOE ε2 has a protective, neuro-modulatory effect. Here, we demonstrate that brain exposure to APOE2 via a gene therapy approach which bathes the entire cortical mantle in the gene product after transduction of the ependyma, rapidly ameliorates established Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE4. This result suggests a promising protective effect of exogenous APOE2, revealing a cell non-autonomous effect of the protein on microglial activation. We also show that plaque associated microglia in the brain of patients who inherit APOE2 similarly have less microglial reactivity to plaques. These data raise the potential that an APOE2 therapeutic could be effective in Alzheimer disease even in individuals born with the risk ε4 allele. One Sentence Summary: Introduction of ApoE2 using an AAV that transduces the ependymal cells of the ventricle causes a reduction in amyloid load and plaque associated synapse loss, and reduces neuroinflammation by modulating microglial responsiveness to plaques.

4.
Brain ; 145(10): 3582-3593, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957486

RESUMEN

Apolipoprotein E (ApoE) is a multifaceted secreted molecule synthesized in the CNS by astrocytes and microglia, and in the periphery largely by the liver. ApoE has been shown to impact the integrity of the blood-brain barrier, and, in humans, the APOE4 allele of the gene is reported to lead to a leaky blood-brain barrier. We used allele specific knock-in mice expressing each of the common (human) ApoE alleles, and longitudinal multiphoton intravital microscopy, to directly monitor the impact of various ApoE isoforms on blood-brain barrier integrity. We found that humanized APOE4, but not APOE2 or APOE3, mice show a leaky blood-brain barrier, increased MMP9, impaired tight junctions, and reduced astrocyte end-foot coverage of blood vessels. Removal of astrocyte-produced ApoE4 led to the amelioration of all phenotypes while the removal of astrocyte-produced ApoE3 had no effect on blood-brain barrier integrity. This work shows a cell specific gain of function effect of ApoE4 in the dysfunction of the BBB and implicates astrocyte production of ApoE4, possibly as a function of astrocytic end foot interactions with vessels, as a key regulator of the integrity of the blood-brain barrier.


Asunto(s)
Apolipoproteína E4 , Astrocitos , Humanos , Animales , Ratones , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Metaloproteinasa 9 de la Matriz , Isoformas de Proteínas/metabolismo
5.
Ann Neurol ; 89(5): 952-966, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550655

RESUMEN

OBJECTIVE: Apolipoprotein E (ApoE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, with the ε4 allele increasing risk in a dose-dependent fashion. In addition to ApoE4 playing a crucial role in amyloid-ß deposition, recent evidence suggests that it also plays an important role in tau pathology and tau-mediated neurodegeneration. It is not known, however, whether therapeutic reduction of ApoE4 would exert protective effects on tau-mediated neurodegeneration. METHODS: Herein, we used antisense oligonucleotides (ASOs) against human APOE to reduce ApoE4 levels in the P301S/ApoE4 mouse model of tauopathy. We treated P301S/ApoE4 mice with ApoE or control ASOs via intracerebroventricular injection at 6 and 7.5 months of age and performed brain pathological assessments at 9 months of age. RESULTS: Our results indicate that treatment with ApoE ASOs reduced ApoE4 protein levels by ~50%, significantly protected against tau pathology and associated neurodegeneration, decreased neuroinflammation, and preserved synaptic density. These data were also corroborated by a significant reduction in levels of neurofilament light chain (NfL) protein in plasma of ASO-treated mice. INTERPRETATION: We conclude that reducing ApoE4 levels should be explored further as a therapeutic approach for APOE4 carriers with tauopathy including Alzheimer's disease. ANN NEUROL 2021;89:952-966.


Asunto(s)
Apolipoproteína E4/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Oligonucleótidos Antisentido/uso terapéutico , Tauopatías/complicaciones , Tauopatías/tratamiento farmacológico , Animales , Apolipoproteína E4/sangre , Apolipoproteína E4/genética , Colesterol/metabolismo , Giro Dentado/patología , Encefalitis/prevención & control , Técnicas de Sustitución del Gen , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Proteínas de Neurofilamentos/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Sinapsis/efectos de los fármacos , Sinapsis/patología , Proteínas tau/metabolismo
6.
Nat Aging ; 1(10): 919-931, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-36199750

RESUMEN

The roles of APOEε4 and APOEε2-the strongest genetic risk and protective factors for Alzheimer's disease-in glial responses remain elusive. We tested the hypothesis that APOE alleles differentially impact glial responses by investigating their effects on the glial transcriptome from elderly control brains with no neuritic amyloid plaques. We identified a cluster of microglial genes that are upregulated in APOEε4 and downregulated in APOEε2 carriers relative to APOEε3 homozygotes. This microglia-APOE cluster is enriched in phagocytosis-including TREM2 and TYROBP-and proinflammatory genes, and is also detectable in brains with frequent neuritic plaques. Next, we tested these findings in APOE knock-in mice exposed to acute (lipopolysaccharide challenge) and chronic (cerebral ß-amyloidosis) insults and found that these mice partially recapitulate human APOE-linked expression patterns. Thus, the APOEε4 allele might prime microglia towards a phagocytic and proinflammatory state through an APOE-TREM2-TYROBP axis in normal aging as well as in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Anciano , Enfermedad de Alzheimer/genética , Alelos , Transcriptoma/genética , Encéfalo/metabolismo , Placa Amiloide/genética , Apolipoproteínas E/genética
7.
Brain Commun ; 1(1): fcz003, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31853523

RESUMEN

One of the major challenges in developing effective therapeutic strategies for Alzheimer's disease is understanding how genetic risk factors contribute to neurodegeneration. The apolipoprotein epsilon 4 isoform (APOE4) and variants in the Clusterin (CLU) gene (also known as apolipoprotein J) are associated with increased risk of developing Alzheimer's. Our previous work demonstrated that APOE4 exacerbates synapse degeneration and synaptic accumulation of toxic oligomeric amyloid beta in human Alzheimer's and mouse models of disease. Here, we observe clusterin in synapses in human Alzheimer's disease brain. The percentage of synapses containing clusterin is higher in APOE4 carriers than APOE3 carriers. Furthermore, we observe oligomeric amyloid beta accumulation within synapses containing clusterin which is also higher in APOE4 carriers. These data link two genetic risk factors with synapse degeneration in Alzheimer's and support a potential role for clusterin working with APOE in causing synaptic damage.

8.
Cell Rep ; 29(11): 3592-3604.e5, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825838

RESUMEN

A key knowledge gap blocking development of effective therapeutics for Alzheimer's disease (AD) is the lack of understanding of how amyloid beta (Aß) peptide and pathological forms of the tau protein cooperate in causing disease phenotypes. Within a mouse tau-deficient background, we probed the molecular, cellular, and behavioral disruption triggered by the influence of wild-type human tau on human Aß-induced pathology. We find that Aß and tau work cooperatively to cause a hyperactivity behavioral phenotype and to cause downregulation of transcription of genes involved in synaptic function. In both our mouse model and human postmortem tissue, we observe accumulation of pathological tau in synapses, supporting the potential importance of synaptic tau. Importantly, tau reduction in the mice initiated after behavioral deficits emerge corrects behavioral deficits, reduces synaptic tau levels, and substantially reverses transcriptional perturbations, suggesting that lowering synaptic tau levels may be beneficial in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Animales , Femenino , Humanos , Masculino , Ratones , Microglía/metabolismo , Conducta Espacial , Sinapsis/metabolismo , Transcriptoma
9.
Acta Neuropathol Commun ; 7(1): 214, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862015

RESUMEN

Degeneration of synapses in Alzheimer's disease (AD) strongly correlates with cognitive decline, and synaptic pathology contributes to disease pathophysiology. We recently observed that the strongest genetic risk factor for sporadic AD, apolipoprotein E epsilon 4 (APOE4), is associated with exacerbated synapse loss and synaptic accumulation of oligomeric amyloid beta in human AD brain. To begin to understand the molecular cascades involved in synapse loss in AD and how this is mediated by APOE, and to generate a resource of knowledge of changes in the synaptic proteome in AD, we conducted a proteomic screen and systematic in silico analysis of synaptoneurosome preparations from temporal and occipital cortices of human AD and control subjects with known APOE gene status. We examined brain tissue from 33 subjects (7-10 per group). We pooled tissue from all subjects in each group for unbiased proteomic analyses followed by validation with individual case samples. Our analysis identified over 5500 proteins in human synaptoneurosomes and highlighted disease, brain region, and APOE-associated changes in multiple molecular pathways including a decreased abundance in AD of proteins important for synaptic and mitochondrial function and an increased abundance of proteins involved in neuroimmune interactions and intracellular signaling.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Proteoma , Sinapsis/metabolismo , Adulto , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Apolipoproteína E4/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Neuronas/patología , Proteómica , Sinapsis/patología
10.
Exp Neurol ; 304: 1-13, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29466703

RESUMEN

One major pathophysiological hallmark of Alzheimer's disease (AD) is senile plaques composed of amyloid ß (Aß). In the amyloidogenic pathway, cleavage of the amyloid precursor protein (APP) is shifted towards Aß production and soluble APPß (sAPPß) levels. Aß is known to impair synaptic function; however, much less is known about the physiological functions of sAPPß. The neurotrophic properties of sAPPα, derived from the non-amyloidogenic pathway of APP cleavage, are well-established, whereas only a few, conflicting studies on sAPPß exist. The intracellular pathways of sAPPß are largely unknown. Since sAPPß is generated alongside Aß by ß-secretase (BACE1) cleavage, we tested the hypothesis that sAPPß effects differ from sAPPα effects as a neurotrophic factor. We therefore performed a head-to-head comparison of both mammalian recombinant peptides in developing primary hippocampal neurons (PHN). We found that sAPPα significantly increases axon length (p = 0.0002) and that both sAPPα and sAPPß increase neurite number (p < 0.0001) of PHN at 7 days in culture (DIV7) but not at DIV4. Moreover, both sAPPα- and sAPPß-treated neurons showed a higher neuritic complexity in Sholl analysis. The number of glutamatergic synapses (p < 0.0001), as well as layer thickness of postsynaptic densities (PSDs), were significantly increased, and GABAergic synapses decreased upon sAPP overexpression in PHN. Furthermore, we showed that sAPPα enhances ERK and CREB1 phosphorylation upon glutamate stimulation at DIV7, but not DIV4 or DIV14. These neurotrophic effects are further associated with increased glutamate sensitivity and CREB1-signaling. Finally, we found that sAPPα levels are significantly reduced in brain homogenates of AD patients compared to control subjects. Taken together, our data indicate critical stage-dependent roles of sAPPs in the developing glutamatergic system in vitro, which might help to understand deleterious consequences of altered APP shedding in AD patients, beyond Aß pathophysiology.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Hipocampo/patología , Homeostasis/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Transducción de Señal/fisiología
11.
Front Cell Neurosci ; 11: 330, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104535

RESUMEN

Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO) mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.

12.
J Neurosci ; 37(49): 11947-11966, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29101243

RESUMEN

Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid ß-protein (Aß), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aß, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aß depend on expression of APP and that the Aß-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aß localizing to synapses and binding of soluble Aß aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aß and suggest modulation of APP expression as a therapy for AD.SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid ß-protein (Aß) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aß-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aß localizing to synapses and genetic ablation of APP prevents both Aß binding and Aß-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/metabolismo , Sinapsis/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/deficiencia , Animales , Encéfalo/patología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Unión Proteica/fisiología , Sinapsis/patología
13.
Nat Commun ; 8: 15295, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492240

RESUMEN

Tau is implicated in more than 20 neurodegenerative diseases, including Alzheimer's disease. Under pathological conditions, Tau dissociates from axonal microtubules and missorts to pre- and postsynaptic terminals. Patients suffer from early synaptic dysfunction prior to Tau aggregate formation, but the underlying mechanism is unclear. Here we show that pathogenic Tau binds to synaptic vesicles via its N-terminal domain and interferes with presynaptic functions, including synaptic vesicle mobility and release rate, lowering neurotransmission in fly and rat neurons. Pathological Tau mutants lacking the vesicle binding domain still localize to the presynaptic compartment but do not impair synaptic function in fly neurons. Moreover, an exogenously applied membrane-permeable peptide that competes for Tau-vesicle binding suppresses Tau-induced synaptic toxicity in rat neurons. Our work uncovers a presynaptic role of Tau that may be part of the early pathology in various Tauopathies and could be exploited therapeutically.


Asunto(s)
Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas tau/metabolismo , Actinas/metabolismo , Animales , Drosophila melanogaster/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Humanos , Mutación/genética , Neuronas/metabolismo , Neuronas/ultraestructura , Dominios Proteicos , Transporte de Proteínas , Ratas , Transmisión Sináptica , Proteínas tau/química
14.
Acta Neuropathol ; 134(2): 221-240, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28349199

RESUMEN

Human-to-human transmission of Creutzfeldt-Jakob disease (CJD) has occurred through medical procedures resulting in iatrogenic CJD (iCJD). One of the commonest causes of iCJD was the use of human pituitary-derived growth hormone (hGH) to treat primary or secondary growth hormone deficiency. As part of a comprehensive tissue-based analysis of the largest cohort yet collected (35 cases) of UK hGH-iCJD cases, we describe the clinicopathological phenotype of hGH-iCJD in the UK. In the 33/35 hGH-iCJD cases with sufficient paraffin-embedded tissue for full pathological examination, we report the accumulation of the amyloid beta (Aß) protein associated with Alzheimer's disease (AD) in the brains and cerebral blood vessels in 18/33 hGH-iCJD patients and for the first time in 5/12 hGH recipients who died from causes other than CJD. Aß accumulation was markedly less prevalent in age-matched patients who died from sporadic CJD and variant CJD. These results are consistent with the hypothesis that Aß, which can accumulate in the pituitary gland, was present in the inoculated hGH preparations and had a seeding effect in the brains of around 50% of all hGH recipients, producing an AD-like neuropathology and cerebral amyloid angiopathy (CAA), regardless of whether CJD neuropathology had occurred. These findings indicate that Aß seeding can occur independently and in the absence of the abnormal prion protein in the human brain. Our findings provide further evidence for the prion-like seeding properties of Aß and give insights into the possibility of iatrogenic transmission of AD and CAA.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Síndrome de Creutzfeldt-Jakob/terapia , Hormona de Crecimiento Humana/uso terapéutico , Adolescente , Adulto , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Sistema Nervioso Central/metabolismo , Estudios de Cohortes , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Priónicas , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Reino Unido/epidemiología , Secuenciación del Exoma , Adulto Joven , Proteínas tau/metabolismo
15.
Eur J Neurosci ; 44(12): 3056-3066, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27748574

RESUMEN

Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aß) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aß. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aß and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aß-plaques and synapse loss, with rTg21221 mice, which overexpress wild-type human tau. When compared to the APP/PS1 mice without human tau, the cross-sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque-associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aß at synapses. Together, these results indicate that adding human wild-type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque-associated synapse loss.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Placa Amiloide/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Astrocitos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Fosforilación , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas tau/genética
16.
Acta Neuropathol Commun ; 3(1): 83, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26651483

RESUMEN

The original version of this article [1] unfortunately contained several mistakes. The presentation of Table 2 and 3 was incorrect, in the HTML and PDF versions of this article. The corrected Tables 2 and 3 are given below.

17.
Acta Neuropathol Commun ; 3: 53, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26335101

RESUMEN

INTRODUCTION: Non-pathological, age-related cognitive decline varies markedly between individuals andplaces significant financial and emotional strain on people, their families and society as a whole.Understanding the differential age-related decline in brain function is critical not only for the development oftherapeutics to prolong cognitive health into old age, but also to gain insight into pathological ageing suchas Alzheimer's disease. The Lothian Birth Cohort of 1936 (LBC1936) comprises a rare group of people forwhom there are childhood cognitive test scores and longitudinal cognitive data during older age, detailedstructural brain MRI, genome-wide genotyping, and a multitude of other biological, psycho-social, andepidemiological data. Synaptic integrity is a strong indicator of cognitive health in the human brain;however, until recently, it was prohibitively difficult to perform detailed analyses of synaptic and axonalstructure in human tissue sections. We have adapted a novel method of tissue preparation at autopsy toallow the study of human synapses from the LBC1936 cohort in unprecedented morphological andmolecular detail, using the high-resolution imaging techniques of array tomography and electronmicroscopy. This allows us to analyze the brain at sub-micron resolution to assess density, proteincomposition and health of synapses. Here we present data from the first donated LBC1936 brain andcompare our findings to Alzheimer's diseased tissue to highlight the differences between healthy andpathological brain ageing. RESULTS: Our data indicates that compared to an Alzheimer's disease patient, the cognitively normalLBC1936 participant had a remarkable degree of preservation of synaptic structures. However,morphological and molecular markers of degeneration in areas of the brain associated with cognition(prefrontal cortex, anterior cingulate cortex, and superior temporal gyrus) were observed. CONCLUSIONS: Our novel post-mortem protocol facilitates high-resolution neuropathological analysis of the well-characterized LBC1936 cohort, extending phenotyping beyond cognition and in vivo imaging to nowinclude neuropathological changes, at the level of single synapses. This approach offers an unprecedentedopportunity to study synaptic and axonal integrity during ageing and how it contributes to differences in agerelatedcognitive change.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Cognición , Sinapsis/patología , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Encéfalo/metabolismo , Estudios de Cohortes , Femenino , Histonas/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Proteínas de la Membrana/metabolismo , Microglía/patología , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Cambios Post Mortem , Sinapsis/metabolismo , Sinapsis/ultraestructura
18.
Elife ; 42015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26032562

RESUMEN

To cause disease and persist in a host, pathogenic and commensal microbes must adhere to tissues. Colonization and infection depend on specific molecular interactions at the host-microbe interface that involve microbial surface proteins, or adhesins. To date, adhesins are only known to bind to host receptors non-covalently. Here we show that the streptococcal surface protein SfbI mediates covalent interaction with the host protein fibrinogen using an unusual internal thioester bond as a 'chemical harpoon'. This cross-linking reaction allows bacterial attachment to fibrin and SfbI binding to human cells in a model of inflammation. Thioester-containing domains are unexpectedly prevalent in Gram-positive bacteria, including many clinically relevant pathogens. Our findings support bacterial-encoded covalent binding as a new molecular principle in host-microbe interactions. This represents an as yet unexploited target to treat bacterial infection and may also offer novel opportunities for engineering beneficial interactions.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Escherichia coli/enzimología , Fibrina/metabolismo , Fibrinógeno/metabolismo , Humanos , Inflamación/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA