Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
3.
Nat Immunol ; 24(3): 414-422, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732425

RESUMEN

Interferon-γ (IFNγ) is an important mediator of cellular immune responses, but high systemic levels of this cytokine are associated with immunopathology. IFNγ binds to its receptor (IFNγR) and to extracellular matrix (ECM) via four positively charged C-terminal amino acids (KRKR), the ECM-binding domain (EBD). Across evolution, IFNγ is not well conserved, but the EBD is highly conserved, suggesting a critical function. Here, we show that IFNγ lacking the EBD (IFNγΔKRKR) does not bind to ECM but still binds to the IFNγR and retains bioactivity. Overexpression of IFNγΔKRKR in tumors reduced local ECM binding, increased systemic levels and induced sickness behavior, weight loss and toxicity. To analyze the function of the EBD during infection, we generated IFNγΔKRKR mice lacking the EBD by using CRISPR-Cas9. Infection with lymphocytic choriomeningitis virus resulted in higher systemic IFNγΔKRKR levels, enhanced sickness behavior, weight loss and fatal toxicity. We conclude that local retention of IFNγ is a pivotal mechanism to protect the organism from systemic toxicity during prolonged immune stimulation.


Asunto(s)
Citocinas , Neoplasias , Ratones , Animales , Citocinas/metabolismo , Interferón gamma/metabolismo , Transducción de Señal , Matriz Extracelular/metabolismo
4.
Nat Commun ; 13(1): 7110, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402845

RESUMEN

Heparan sulfates are complex polysaccharides that mediate the interaction with a broad range of protein ligands at the cell surface. A key step in heparan sulfate biosynthesis is catalyzed by the bi-functional glycosyltransferases EXT1 and EXT2, which generate the glycan backbone consisting of repeating N-acetylglucosamine and glucuronic acid units. The molecular mechanism of heparan sulfate chain polymerization remains, however, unknown. Here, we present the cryo-electron microscopy structure of human EXT1-EXT2, which reveals the formation of a tightly packed hetero-dimeric complex harboring four glycosyltransferase domains. A combination of in vitro and in cellulo mutational studies is used to dissect the functional role of the four catalytic sites. While EXT1 can catalyze both glycosyltransferase reactions, our results indicate that EXT2 might only have N-acetylglucosamine transferase activity. Our findings provide mechanistic insight into heparan sulfate chain elongation as a nonprocessive process and lay the foundation for future studies on EXT1-EXT2 function in health and disease.


Asunto(s)
Heparitina Sulfato , N-Acetilglucosaminiltransferasas , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Microscopía por Crioelectrón , Heparitina Sulfato/metabolismo , Proteínas/metabolismo , Nucleotidiltransferasas , Glicosiltransferasas/metabolismo
5.
Cell Rep ; 38(11): 110516, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294879

RESUMEN

Sulfs represent a class of unconventional sulfatases which provide an original post-synthetic regulatory mechanism for heparan sulfate polysaccharides and are involved in multiple physiopathological processes, including cancer. However, Sulfs remain poorly characterized enzymes, with major discrepancies regarding their in vivo functions. Here we show that human Sulf-2 (HSulf-2) harbors a chondroitin/dermatan sulfate glycosaminoglycan (GAG) chain, attached to the enzyme substrate-binding domain. We demonstrate that this GAG chain affects enzyme/substrate recognition and tunes HSulf-2 activity in vitro and in vivo. In addition, we show that mammalian hyaluronidase acts as a promoter of HSulf-2 activity by digesting its GAG chain. In conclusion, our results highlight HSulf-2 as a proteoglycan-related enzyme and its GAG chain as a critical non-catalytic modulator of the enzyme activity. These findings contribute to clarifying the conflicting data on the activities of the Sulfs.


Asunto(s)
Dermatán Sulfato , Sulfotransferasas , Animales , Heparitina Sulfato , Humanos , Mamíferos/metabolismo , Unión Proteica , Sulfatasas/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
6.
Methods Mol Biol ; 2303: 121-137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626375

RESUMEN

Heparan sulfate chains are complex and structurally diverse polysaccharides that interact with a large number of proteins, thereby regulating a vast array of biological functions. Understanding this activity requires obtaining oligosaccharides of defined structures. Here we describe methods for isolating, engineering, and characterizing heparan sulfate-derived oligosaccharides and approaches based on high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and bio-layer interferometry (BLI) to study their structures, modifications, and interactions.


Asunto(s)
Oligosacáridos/química , Cromatografía Líquida de Alta Presión , Heparitina Sulfato , Proteínas
7.
Anal Bioanal Chem ; 414(1): 551-559, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34258651

RESUMEN

Differential sensing of proteins based on cross-reactive arrays and pattern recognition is a promising technique for the detection and identification of proteins. In this study, a rational biomimetic strategy has been used to prepare sensing materials capable of discriminating structurally similar proteins, such as deletion and point mutants of a cytokine, by mimicking the biological properties of heparan sulfate (HS). Using the self-assembly of two disaccharides, lactose and sulfated lactose at various ratios on the surface of a chip, an array of combinatorial cross-reactive receptors has been prepared. Coupling with surface plasmon resonance imaging (SPRi), the obtained cross-reactive array is very efficient for protein sensing. It is able to detect HS binding proteins (HSbps) such as IFNγ at nanomolar concentrations. Moreover, such a system is capable of discriminating between IFNγ and its mutants with good selectivity.


Asunto(s)
Citocinas , Heparitina Sulfato , Biomimética , Disacáridos , Heparitina Sulfato/química , Resonancia por Plasmón de Superficie/métodos
8.
Neuron ; 109(11): 1825-1835.e5, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33887199

RESUMEN

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5' UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Péptidos/toxicidad , Expansión de Repetición de Trinucleótido , Animales , Muerte Celular , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Células HEK293 , Humanos , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Sistemas de Lectura Abierta , Péptidos/genética , Péptidos/metabolismo
9.
Nat Commun ; 12(1): 1849, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758182

RESUMEN

The remodeling of neurons is a conserved fundamental mechanism underlying nervous system maturation and function. Astrocytes can clear neuronal debris and they have an active role in neuronal remodeling. Developmental axon pruning of Drosophila memory center neurons occurs via a degenerative process mediated by infiltrating astrocytes. However, how astrocytes are recruited to the axons during brain development is unclear. Using an unbiased screen, we identify the gene requirement of orion, encoding for a chemokine-like protein, in the developing mushroom bodies. Functional analysis shows that Orion is necessary for both axonal pruning and removal of axonal debris. Orion performs its functions extracellularly and bears some features common to chemokines, a family of chemoattractant cytokines. We propose that Orion is a neuronal signal that elicits astrocyte infiltration and astrocyte-driven axonal engulfment required during neuronal remodeling in the Drosophila developing brain.


Asunto(s)
Astrocitos/metabolismo , Quimiocinas/metabolismo , Drosophila/metabolismo , Cuerpos Pedunculados/metabolismo , Plasticidad Neuronal/fisiología , Secuencias de Aminoácidos , Animales , Axones/metabolismo , Quimiocinas/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Cuerpos Pedunculados/crecimiento & desarrollo , Mutagénesis , Unión Proteica , Interferencia de ARN , Secuenciación Completa del Genoma
10.
Glycobiology ; 31(7): 851-858, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-33554262

RESUMEN

Heparan sulfates (HS) is a polysaccharide found at the cell surface, where it mediates interactions with hundreds of proteins and regulates major pathophysiological processes. HS is highly heterogeneous and structurally complex and examples that define their structure-activity relationships remain limited. Here, in order to characterize a protein-HS interface and define the corresponding saccharide-binding domain, we present a chemo-enzymatic approach that generates 13C-labeled HS-based oligosaccharide structures. Nuclear magnetic resonance (NMR) spectroscopy, which efficiently discriminates between important or redundant chemical groups in the oligosaccharides, is employed to characterize these molecules alone and in interaction with proteins. Using chemokines as model system, docking based on NMR data on both proteins and oligosaccharides enable the identification of the structural determinant involved in the complex. This study shows that both the position of the sulfo groups along the chain and their mode of presentation, rather than their overall number, are key determinant and further points out the usefulness of these 13C-labeled oligosaccharides in obtaining detailed structural information on HS-protein complexes.


Asunto(s)
Heparitina Sulfato , Proteínas , Heparitina Sulfato/química , Espectroscopía de Resonancia Magnética , Oligosacáridos/química , Proteínas/metabolismo
11.
Molecules ; 25(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937952

RESUMEN

Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are "gagosylated" and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.


Asunto(s)
Aparato de Golgi/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Heparitina Sulfato/metabolismo , Animales , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilación , Proteoglicanos de Heparán Sulfato/química , Humanos , Mutación , Oligosacáridos/química , Biosíntesis de Proteínas , Dominios Proteicos , Procesamiento Proteico-Postraduccional
12.
Anal Bioanal Chem ; 412(2): 507-519, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31807804

RESUMEN

A biosensor device for the detection and characterization of protein-glycosaminoglycan interactions is being actively sought and constitutes the key to identifying specific carbohydrate ligands, an important issue in glycoscience. Mass spectrometry (MS) hyphenated methods are promising approaches for carbohydrate enrichment and subsequent structural characterization. In the study herein, we report the analysis of interactions between the glycosaminoglycans (GAGs) heparin (HP) and heparan sulfate (HS) and various cytokines by coupling surface plasmon resonance imaging (SPRi) for thermodynamic analysis method and MALDI-TOF MS for structural determination. To do so, we developed an SPR biochip in a microarray format and functionalized it with a self-assembled monolayer of short poly(ethylene oxide) chains for grafting the human cytokines stromal cell-derived factor-1 (SDF-1α), monocyte chemotactic protein-1 (MCP-1), and interferon-γ. The thermodynamic parameters of the interactions between these cytokines and unfractionated HP/HS and derived oligosaccharides were successively determined using SPRi monitoring, and the identification of the captured carbohydrates was carried out directly on the biochip surface using MALDI-TOF MS, revealing cytokine preferential affinity for GAGs. The MS identification was enhanced by on-chip digestion of the cytokine-bound GAGs with heparinase, leading to the detection of oligosaccharides likely involved in the binding sequence of GAG ligands. Although several carbohydrate array-based assays have been reported, this study is the first report of the successful analysis of protein-GAG interactions using SPRi-MS coupling.


Asunto(s)
Glicosaminoglicanos/metabolismo , Dispositivos Laboratorio en un Chip , Proteínas/metabolismo , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles , Cinética , Ligandos , Unión Proteica , Termodinámica
13.
Proc Natl Acad Sci U S A ; 116(14): 6760-6765, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30872481

RESUMEN

Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS)n substrate or a (IdoA-GlcNS)n product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of N-sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed light on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.


Asunto(s)
Carbohidrato Epimerasas/química , Ácido Glucurónico/química , Heparina/química , Oligosacáridos/química , Sitios de Unión , Carbohidrato Epimerasas/genética , Catálisis , Cristalografía por Rayos X , Células HEK293 , Humanos , Relación Estructura-Actividad , Especificidad por Sustrato
14.
Cell Mol Life Sci ; 76(9): 1807-1819, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30788513

RESUMEN

Through their ability to edit 6-O-sulfation pattern of Heparan sulfate (HS) polysaccharides, Sulf extracellular endosulfatases have emerged as critical regulators of many biological processes, including tumor progression. However, study of Sulfs remains extremely intricate and progress in characterizing their functional and structural features has been hampered by limited access to recombinant enzyme. In this study, we unlock this critical bottleneck, by reporting an efficient expression and purification system of recombinant HSulf-2 in mammalian HEK293 cells. This novel source of enzyme enabled us to investigate the way the enzyme domain organization dictates its functional properties. By generating mutants, we confirmed previous studies that HSulf-2 catalytic (CAT) domain was sufficient to elicit arylsulfatase activity and that its hydrophilic (HD) domain was necessary for the enzyme 6-O-endosulfatase activity. However, we demonstrated for the first time that high-affinity binding of HS substrates occurred through the coordinated action of both domains, and we identified and characterized 2 novel HS binding sites within the CAT domain. Altogether, our findings contribute to better understand the molecular mechanism governing HSulf-2 substrate recognition and processing. Furthermore, access to purified recombinant protein opens new perspectives for the resolution of HSulf structure and molecular features, as well as for the development of Sulf-specific inhibitors.


Asunto(s)
Dominio Catalítico/genética , Heparitina Sulfato/química , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Sitios de Unión/genética , Línea Celular , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Sulfatasas , Sulfotransferasas/biosíntesis
15.
Ann Neurol ; 85(3): 406-420, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30635946

RESUMEN

OBJECTIVE: The two related tumor necrosis factor members a proliferation-inducing ligand (APRIL) and B-cell activation factor (BAFF) are currently targeted in autoimmune diseases as B-cell regulators. In multiple sclerosis (MS), combined APRIL/BAFF blockade led to unexpected exacerbated inflammation in the central nervous system (CNS) of patients. Here, we investigate the role of the APRIL/BAFF axis in the CNS. METHODS: APRIL expression was analyzed in MS lesions by immunohistochemistry. The in vivo role of APRIL was assessed in the murine MS model, experimental autoimmune encephalitis (EAE). Functional in vitro studies were performed with human and mouse astrocytes. RESULTS: APRIL was expressed in lesions from EAE. In its absence, the disease was worst. Lesions from MS patients also showed APRIL expression upon infiltration of macrophages. Notably, all the APRIL secreted by these macrophages specifically targeted astrocytes. The upregulation of chondroitin sulfate proteoglycan, sometimes bearing chondroitin sulfate of type E sugar moieties, binding APRIL, in reactive astrocytes explained the latter selectivity. Astrocytes responded to APRIL by producing a sufficient amount of IL-10 to dampen antigen-specific T-cell proliferation and pathogenic cytokine secretion. Finally, an intraspinal delivery of recombinant APRIL before disease onset, shortly reduced EAE symptoms. Repeated intravenous injections of recombinant APRIL before and even at disease onset also had an effect. INTERPRETATION: Our data show that APRIL mediates an anti-inflammatory response from astrocytes in MS lesions. This protective activity is not shared with BAFF. ANN NEUROL 2019;85:406-420.


Asunto(s)
Astrocitos/metabolismo , Factor Activador de Células B/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Adulto , Anciano , Animales , Astrocitos/inmunología , Astrocitos/patología , Proliferación Celular , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sulfatos de Condroitina/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Inmunohistoquímica , Interleucina-10/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/farmacología
16.
PLoS Pathog ; 14(12): e1007432, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30521629

RESUMEN

CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , Receptores CCR5/química , Receptores CCR5/metabolismo , Internalización del Virus , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Fenotipo , Unión Proteica
18.
Glycobiology ; 28(7): 534-541, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718295

RESUMEN

The HS3ST3A1/B1 genes encode two homologous 3-O-sulfotransferases involved in the late modification step during heparan sulfate (HS) biosynthesis. In addition to the single nucleotide polymorphisms (SNPs) rs28470223 (C > T) in the promoter region of both HS3ST3A1 and rs62636623 (Gly/Arg) in the stem region of HS3ST3B1, three missense mutations (rs62056073, rs61729712 and rs9906590) located within the catalytic sulfotransferase domain of 3-OST-B1 are linked and associated to Plasmodium falciparum parasitaemia. To ascertain the functional effects of these SNP associations, we investigated the regulatory effect of rs28470223 and characterized the enzymatic activity of the missense SNP rs61729712 (Ser279Asn) localized at proximity of the substrate binding cleft. The SNP rs28470223 results in decreased promoter activity of HS3ST3A1 in K562 cells, suggesting a reduced in vivo transcription activity of the target gene. A comparative kinetic analysis of wt HS3ST3B1 and the Ser269Asn variant (rs61729712) using a HS-derived oligosaccharide substrate reveals a slightly higher catalytic activity for the SNP variant. These genetic and enzymatic studies suggest that genetic variations in enzymes responsible of HS 3-O-sulfation can modulate their promoter and enzymatic activities and may influence P. falciparum parasitaemia.


Asunto(s)
Parasitemia/genética , Plasmodium falciparum , Polimorfismo de Nucleótido Simple , Sulfotransferasas/genética , Sitios de Unión , Línea Celular Tumoral , Heparitina Sulfato/metabolismo , Humanos , Mutación Missense , Unión Proteica , Sulfotransferasas/química , Sulfotransferasas/metabolismo
19.
Arch Cardiovasc Dis ; 111(1): 41-52, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29113787

RESUMEN

BACKGROUND: Metabolic syndrome is a combination of symptoms including obesity, dyslipidaemia, glucose intolerance and hypertension. Oxidative stress appears to be a pathophysiological factor that links these signs and encourages progression towards heart failure and diabetes. Nox4 is a hydrogen peroxide nicotinamide adenine dinucleotide phosphate (NADPH) oxidase isoform - found in various cardiovascular cells and tissues, but also in tissues such as the liver - which is involved in glucose and lipid homeostasis. AIMS: To test whether inhibition of the Nox4 enzyme could improve blood pressure and metabolic parameters in mice receiving either angiotensin II or a high-fat diet. METHODS: Systolic and diastolic arterial pressures, pulse rate and heart rate were obtained in 24 male mice (12 wild-type [WT] and 12 Nox4-/-) before and during 14 days of angiotensin II infusion. After angiotensin II infusion, cardiac histological remodeling was assessed. Weight and biochemical parameters were measured in 18 male and 18 female mice (nine WT and nine Nox4-/- per gender) after 10 weeks on a standard chow diet, then 15 weeks on a high-fat diet. Glucose tolerance and insulin sensitivity were tested at age 25 weeks. RESULTS: Knock-out animals did not demonstrate a baseline blood pressure phenotype, but blocking Nox4 protected against angiotensin II-mediated arterial and pulse pressure increases. No protection against angiotensin II-induced cardiac fibrosis was observed. From a metabolic point of view, Nox4 inhibition reduced plasma triglycerides in male and female mice under a chow diet. However, Nox4 deletion did not affect the metabolic profile under a high-fat diet in males or females, but increased glucose intolerance in females. CONCLUSION: Our data identify Nox4 as a key source of radical oxygen species involved in hypertension and some metabolic problems.


Asunto(s)
Presión Sanguínea , Hipertensión/enzimología , Síndrome Metabólico/enzimología , NADPH Oxidasa 4/deficiencia , Angiotensina II , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Presión Sanguínea/genética , Cardiomegalia/inducido químicamente , Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Fibrosis , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca , Hipertensión/inducido químicamente , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/enzimología , Miocardio/patología , NADPH Oxidasa 4/genética , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Triglicéridos/sangre , Remodelación Ventricular
20.
Open Biol ; 7(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29070611

RESUMEN

Chemokines promote directional cell migration through binding to G-protein-coupled receptors, and as such are involved in a large array of developmental, homeostatic and pathological processes. They also interact with heparan sulfate (HS), the functional consequences of which depend on the respective location of the receptor- and the HS-binding sites, a detail that remains elusive for most chemokines. Here, to set up a biochemical framework to investigate how HS can regulate CXCL13 activity, we solved the solution structure of CXCL13. We showed that it comprises an unusually long and disordered C-terminal domain, appended to a classical chemokine-like structure. Using three independent experimental approaches, we found that it displays a unique association mode to HS, involving two clusters located in the α-helix and the C-terminal domain. Computational approaches were used to analyse the HS sequences preferentially recognized by the protein and gain atomic-level understanding of the CXCL13 dimerization induced upon HS binding. Starting with four sets of 254 HS tetrasaccharides, we identified 25 sequences that bind to CXCL13 monomer, among which a single one bound to CXCL13 dimer with high consistency. Importantly, we found that CXCL13 can be functionally presented to its receptor in a HS-bound form, suggesting that it can promote adhesion-dependent cell migration. Consistently, we designed CXCL13 mutations that preclude interaction with HS without affecting CXCR5-dependent cell signalling, opening the possibility to unambiguously demonstrate the role of HS in the biological function of this chemokine.


Asunto(s)
Sitios de Unión , Quimiocina CXCL13/química , Quimiocina CXCL13/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Conformación Molecular , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Quimiocina CXCL13/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes , Soluciones , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA