Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Physiol ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37082830

RESUMEN

Electromechanical reciprocity - comprising electro-mechanical (EMC) and mechano-electric coupling (MEC) - provides cardiac adaptation to changing physiological demands. Understanding electromechanical reciprocity and its impact on function and heterogeneity in pathological conditions - such as (drug-induced) acquired long QT syndrome (aLQTS) - might lead to novel insights in arrhythmogenesis. Our aim is to investigate how electrical changes impact on mechanical function (EMC) and vice versa (MEC) under physiological conditions and in aLQTS. To measure regional differences in EMC and MEC in vivo, we used tissue phase mapping cardiac MRI and a 24-lead ECG vest in healthy (control) and IKr -blocker E-4031-induced aLQTS rabbit hearts. MEC was studied in vivo by acutely increasing cardiac preload, and ex vivo by using voltage optical mapping (OM) in beating hearts at different preloads. In aLQTS, electrical repolarization (heart rate corrected RT-interval, RTn370) was prolonged compared to control (P < 0.0001) with increased spatial and temporal RT heterogeneity (P < 0.01). Changing electrical function (in aLQTS) resulted in significantly reduced diastolic mechanical function and prolonged contraction duration (EMC), causing increased apico-basal mechanical heterogeneity. Increased preload acutely prolonged RTn370 in both control and aLQTS hearts (MEC). This effect was more pronounced in aLQTS (P < 0.0001). Additionally, regional RT-dispersion increased in aLQTS. Motion-correction allowed us to determine APD-prolongation in beating aLQTS hearts, but limited motion correction accuracy upon preload-changes prevented a clear analysis of MEC ex vivo. Mechano-induced RT-prolongation and increased heterogeneity were more pronounced in aLQTS than in healthy hearts. Acute MEC effects may play an additional role in LQT-related arrhythmogenesis, warranting further mechanistic investigations. KEY POINTS: Electromechanical reciprocity comprising excitation-contraction coupling (EMC) and mechano-electric feedback loops (MEC) is essential for physiological cardiac function. Alterations in electrical and/or mechanical heterogeneity are known to have potentially pro-arrhythmic effects. In this study, we aimed to investigate how electrical changes impact on the mechanical function (EMC) and vice versa (MEC) both under physiological conditions (control) and in acquired long QT syndrome (aLQTS). We show that changing the electrical function (in aLQTS) results in significantly altered mechanical heterogeneity via EMC and, vice versa, that increasing the preload acutely prolongs repolarization duration and increases electrical heterogeneity, particularly in aLQTS as compared to control. Our results substantiate the hypothesis that LQTS is an ?electro-mechanical', rather than a 'purely electrical', disease and suggest that acute MEC effects may play an additional role in LQT-related arrhythmogenesis.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35792870

RESUMEN

We report on the case of a 30-month-old boy who developed severe deep cervical necrosis after bypass surgery for total cavopulmonary connection, followed by low-cardiac output and extracorporeal life support. As several bedside debridements failed to result in sufficient wound healing, a 2-stage necrectomy followed by autologous reconstruction with a free anterolateral thigh-flap was required. Due to impaired circulation, postoperative flap monitoring was extremely difficult. To ensure flap perfusion, mean arterial pressure had to be raised by catecholamines over 7 days.


Asunto(s)
Colgajos Tisulares Libres , Procedimientos de Cirugía Plástica , Corazón Univentricular , Niño , Preescolar , Colgajos Tisulares Libres/cirugía , Humanos , Masculino , Muslo/cirugía , Trasplante Autólogo , Cicatrización de Heridas
3.
Diabetes Obes Metab ; 21(5): 1168-1176, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30784161

RESUMEN

AIMS: Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone that augments insulin secretion in pancreatic ß-cells via its glucose-dependent insulinotropic polypeptide receptor (GIPR). Recent genome-wide association studies identified a single nucleotide variant (SNV) in the GIPR encoding gene (GIPR), rs1800437, that is associated with obesity and insulin resistance. In the present study, we tested whether GIPR variants contribute to obesity and disturb glucose homeostasis or diabetes in specific patient populations. MATERIALS AND METHODS: Exon sequencing of GIPR was performed in 164 children with obesity and insulin resistance and in 80 children with paediatric-onset diabetes of unknown origin. The Study of Health in Pomerania (SHIP) cohort, comprising 8320 adults, was screened for the GIPR variant Arg217Leu. GIPR variants were expressed in COS-7 cells and cAMP production was measured upon stimulation with GIP. Cell surface expression was determined by ELISA. Protein homology modelling of the GIPR variants was performed to extract three-dimensional information of the receptor. RESULTS: A heterozygous missense GIPR variant Arg217Leu (rs200485112) was identified in a patient of Asian ancestry. Functional characterization of Arg217Leu revealed reduced surface expression and signalling after GIP challenge. The homology model of the GIPR structure supports the observed functional relevance of Arg217Leu. CONCLUSION: In vitro functional studies and protein homology modelling indicate a potential relevance of the GIPR variant Arg217Leu in receptor function. The heterozygous variant displayed partial co-segregation with diabetes. Based on these findings, we suggest that GIPR variants may play a role in disturbed glucose homeostasis and may be of clinical relevance in homozygous patients.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Receptores de la Hormona Gastrointestinal/genética , Adolescente , Edad de Inicio , Sustitución de Aminoácidos/genética , Animales , Arginina/genética , Células COS , Niño , Chlorocebus aethiops , Estudios de Cohortes , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Alemania/epidemiología , Homocigoto , Humanos , Resistencia a la Insulina/genética , Leucina/genética , Masculino , Obesidad Infantil/complicaciones , Obesidad Infantil/epidemiología , Obesidad Infantil/genética
4.
Front Pharmacol ; 8: 807, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225575

RESUMEN

Activation of trace amine-associated receptor 1 (TAAR1) in endocrine pancreas is involved in weight regulation and glucose homeostasis. The purpose of this study was the identification and characterization of potential TAAR1 variants in patients with overweight/obesity and disturbed glucose homeostasis. Screening for TAAR1 variants was performed in 314 obese or overweight patients with impaired insulin secretion. The detected variants were functionally characterized concerning TAAR1 cell surface expression and signaling properties and their allele frequencies were determined in the population-based Study of Health in Pomerania (SHIP). Three heterozygous carriers of the single nucleotide missense variants p.Arg23Cys (R23C, rs8192618), p.Ser49Leu (S49L, rs140960896), and p.Ille171Leu (I171L, rs200795344) were detected in the patient cohort. While p.Ser49Leu and p.Ille171Leu were found in obese/overweight patients with slightly impaired glucose homeostasis, p.Arg23Cys was identified in a patient with a complete loss of insulin production. Functional in vitro characterization revealed a like wild-type function for I171L, partial loss of function for S49L and a complete loss of function for R23C. The frequency of the R23C variant in 2018 non-diabetic control individuals aged 60 years and older in the general population-based SHIP cohort was lower than in the analyzed patient sample. Both variants are rare in the general population indicating a recent origin in the general gene pool and/or the consequence of pronounced purifying selection, in line with the obvious detrimental effect of the mutations. In conclusion, our study provides hints for the existence of naturally occurring TAAR1 variants with potential relevance for weight regulation and glucose homeostasis.

5.
Br J Pharmacol ; 172(13): 3426-33, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25765843

RESUMEN

BACKGROUND AND PURPOSE: 3-Iodothyronamine (3-T1 AM) is an endogenous thyroid hormone derivative reported to induce strong hypothermia and bradycardia within minutes upon injection in rodents. Although 3-T1 AM is rapidly converted to several other metabolites in vivo, these strong pharmacological responses were solely attributed to 3-T1 AM, leaving potential contributions of downstream products untested. We therefore examined the cardiometabolic effects of 3-iodothyroacetic acid (TA1 ), the main degradation product of 3-T1 AM. EXPERIMENTAL APPROACH: We used a sensitive implantable radiotelemetry system in C57/Bl6J mice to study the effects of TA1 on body temperature and heart rate, as well as other metabolic parameters. KEY RESULTS: Interestingly, despite using pharmacological TA1 doses, we observed no effects on heart rate or body temperature after a single TA1 injection (50 mg·kg(-1) , i.p.) compared to sham-injected controls. Repeated administration of TA1 (5 mg·kg(-1) , i.p. for 7 days) likewise did not alter body weight, food and water intake, heart rate, blood pressure, brown adipose tissue (BAT) thermogenesis or body temperature. Moreover, mRNA expression of tissue specific genes in heart, kidney, liver, BAT and lung was also not altered by TA1 compared to sham-injected controls. CONCLUSIONS AND IMPLICATIONS: Our data therefore conclusively demonstrate that TA1 does not contribute to the cardiovascular or thermoregulatory effects observed after 3-T1 AM administration in mice, suggesting that the oxidative deamination constitutes an important deactivation mechanism for 3-T1 AM with possible implications for cardiovascular and thermoregulatory functions.


Asunto(s)
Tironinas/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , ARN Mensajero/metabolismo , Tiroxina/sangre , Transcriptoma/efectos de los fármacos , Triyodotironina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA