Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Alzheimers Dement ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988055

RESUMEN

INTRODUCTION: Spatial extent-based measures of how far amyloid beta (Aß) has spread throughout the neocortex may be more sensitive than traditional Aß-positron emission tomography (PET) measures of Aß level for detecting early Aß deposits in preclinical Alzheimer's disease (AD) and improve understanding of Aß's association with tau proliferation and cognitive decline. METHODS: Pittsburgh Compound-B (PIB)-PET scans from 261 cognitively unimpaired older adults from the Harvard Aging Brain Study were used to measure Aß level (LVL; neocortical PIB DVR) and spatial extent (EXT), calculated as the proportion of the neocortex that is PIB+. RESULTS: EXT enabled earlier detection of Aß deposits longitudinally confirmed to reach a traditional LVL-based threshold for Aß+ within 5 years. EXT improved prediction of cognitive decline (Preclinical Alzheimer Cognitive Composite) and tau proliferation (flortaucipir-PET) over LVL. DISCUSSION: These findings indicate EXT may be more sensitive to Aß's role in preclinical AD than level and improve targeting of individuals for AD prevention trials. HIGHLIGHTS: Aß spatial extent (EXT) was measured as the percentage of the neocortex with elevated Pittsburgh Compound-B. Aß EXT improved detection of Aß below traditional PET thresholds. Early regional Aß deposits were spatially heterogeneous. Cognition and tau were more closely tied to Aß EXT than Aß level. Neocortical tau onset aligned with reaching widespread neocortical Aß.

2.
Alzheimers Res Ther ; 16(1): 148, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961512

RESUMEN

BACKGROUND: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR. METHODS: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aß, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women). RESULTS: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline. CONCLUSION: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Femenino , Masculino , Anciano , Proteínas tau/metabolismo , Estudios Longitudinales , Estudios Transversales , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Cognición/fisiología , Persona de Mediana Edad , Reserva Cognitiva/fisiología , Biomarcadores , Neuroimagen/métodos
3.
Ann Neurol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007398

RESUMEN

OBJECTIVE: Elevated entorhinal cortex (EC) tau in low beta-amyloid individuals can predict accumulation of pathology and cognitive decline. We compared the accuracy of magnetic resonance imaging (MRI)-derived locus coeruleus integrity, neocortical beta-amyloid burden by positron emission tomography (PET), and hippocampal volume in identifying elevated entorhinal tau signal in asymptomatic individuals who are considered beta-amyloid PET-negative. METHODS: We included 188 asymptomatic individuals (70.78 ± 11.51 years, 58% female) who underwent 3T-MRI of the locus coeruleus, Pittsburgh compound-B (PiB), and Flortaucipir (FTP) PET. Associations between elevated EC tau and neocortical PiB, hippocampal volume, or locus coeruleus integrity were evaluated and compared using logistic regression and receiver operating characteristic analyses in the PiB- sample with a clinical dementia rating (CDR) of 0. Associations with clinical progression (CDR-sum-of-boxes) over a time span of 6 years were evaluated with Cox proportional hazard models. RESULTS: We identified 26 (21%) individuals with high EC FTP in the CDR = 0/PiB- sample. Locus coeruleus integrity was a significantly more sensitive and specific predictor of elevated EC FTP (area under the curve [AUC] = 85%) compared with PiB (AUC = 77%) or hippocampal volume (AUC = 76%). Based on the Youden-index, locus coeruleus integrity obtained a sensitivity of 77% and 85% specificity. Using the resulting locus coeruleus Youden cut-off, lower locus coeruleus integrity was associated with a two-fold increase in clinical progression, including mild cognitive impairment. INTERPRETATION: Locus coeruleus integrity has promise as a low-cost, non-invasive screening instrument to detect early cortical tau deposition and associated clinical progression in asymptomatic, low beta-amyloid individuals. ANN NEUROL 2024.

4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38904081

RESUMEN

The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.


Asunto(s)
Astrocitos , Proteína Ácida Fibrilar de la Glía , Locus Coeruleus , Humanos , Femenino , Masculino , Locus Coeruleus/diagnóstico por imagen , Astrocitos/fisiología , Anciano , Persona de Mediana Edad , Adulto , Anciano de 80 o más Años , Proteína Ácida Fibrilar de la Glía/metabolismo , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Neuritas/fisiología
5.
Alzheimers Res Ther ; 16(1): 119, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822365

RESUMEN

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Imagen por Resonancia Magnética , Lóbulo Parietal , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/fisiopatología , Anciano , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Imagen por Resonancia Magnética/métodos , Lóbulo Parietal/diagnóstico por imagen , Anciano de 80 o más Años , Atención/fisiología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Tomografía de Emisión de Positrones , Estudios Transversales , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Pruebas Neuropsicológicas
6.
Alzheimers Res Ther ; 16(1): 129, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886798

RESUMEN

BACKGROUND: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS: A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS: Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS: Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Locus Coeruleus , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Femenino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Masculino , Anciano , Proteínas tau/metabolismo , Anciano de 80 o más Años , Estudios de Cohortes , Péptidos beta-Amiloides/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Carbolinas , Tiazoles , Compuestos de Anilina , Grosor de la Corteza Cerebral
7.
Nat Commun ; 15(1): 4809, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844444

RESUMEN

The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Percepción Olfatoria , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Femenino , Proteínas tau/metabolismo , Proteínas tau/genética , Masculino , Anciano , Percepción Olfatoria/fisiología , Envejecimiento/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Anciano de 80 o más Años , Vías Olfatorias/metabolismo , Vías Olfatorias/diagnóstico por imagen , Olfato/fisiología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Lóbulo Temporal/diagnóstico por imagen , Persona de Mediana Edad
8.
Artículo en Inglés | MEDLINE | ID: mdl-38763835

RESUMEN

OBJECTIVE: Anxiety disorders and subsyndromal anxiety symptoms are highly prevalent in late life. Recent studies support that anxiety may be a neuropsychiatric symptom during preclinical Alzheimer's disease (AD) and that higher anxiety is associated with more rapid cognitive decline and progression to cognitive impairment. However, the associations of specific anxiety symptoms with AD pathologies and with co-occurring subjective and objective cognitive changes have not yet been established. METHODS: Baseline data from the A4 and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration studies were analyzed. Older adult participants (n = 4,486) underwent assessments of anxiety (State-Trait Anxiety Inventory-6 item version [STAI]), and cerebral amyloid-beta (Aß; 18F-florbetapir) PET and a subset underwent tau (18F-flortaucipir) PET. Linear regressions estimated associations of Aß in a cortical composite and tau in the amygdala, entorhinal, and inferior temporal regions with STAI-Total and individual STAI item scores. Models adjusted for age, sex, education, marital status, depression, Apolipoprotein ε4 genotype, and subjective and objective cognition (Cognitive Function Index-participant; Preclinical Alzheimer Cognitive Composite). RESULTS: Greater Aß deposition was significantly associated with higher STAI-Worry, adjusting for all covariates, but not with other STAI items or STAI-Total scores. In mediation analyses, the association of Aß with STAI-Worry was partially mediated by subjective cognition with a stronger direct effect. No associations were found for regional tau deposition with STAI-Total or STAI-Worry score. CONCLUSION: Greater worry was associated with Aß but not tau deposition, independent of subjective and objective cognition in cognitively unimpaired (CU) older adults. These findings implicate worry as an early, specific behavioral marker and a possible therapeutic target in preclinical AD.

9.
J Alzheimers Dis ; 99(1): 105-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607758

RESUMEN

 Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Humanos , Locus Coeruleus/patología , Enfermedad de Alzheimer/patología , Femenino , Masculino , Anciano de 80 o más Años , Anciano , Neuronas/patología , Neuronas/metabolismo , Ovillos Neurofibrilares/patología , Proteínas tau/metabolismo , Recuento de Células
10.
Alzheimers Dement ; 20(6): 3958-3971, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38676563

RESUMEN

INTRODUCTION: Animal research has shown that tau pathology in the locus coeruleus (LC) is associated with reduced norepinephrine signaling, lower projection density to the medial temporal lobe (MTL), atrophy, and cognitive impairment. We investigated the contribution of LC-MTL functional connectivity (FCLC-MTL) on cortical atrophy across Braak stage regions and its impact on cognition. METHODS: We analyzed functional magnetic resonance imaging and amyloid beta (Aß) positron emission tomography data from 128 cognitively normal participants, associating novelty-related FCLC-MTL with longitudinal atrophy and cognition with and without Aß moderation. RESULTS: Cross-sectionally, lower FCLC-MTL was associated with atrophy in Braak stage II regions. Longitudinally, atrophy in Braak stage 2 to 4 regions related to lower baseline FCLC-MTL at elevated levels of Aß, but not to other regions. Atrophy in Braak stage 2 regions mediated the relation between FCLC-MTL and subsequent cognitive decline. DISCUSSION: FCLC-MTL is implicated in Aß-related cortical atrophy, suggesting that LC-MTL connectivity could confer neuroprotective effects in preclinical AD. HIGHLIGHTS: Novelty-related functional magnetic resonance imaging (fMRI) LC-medial temporal lobe (MTL) connectivity links to longitudinal Aß-dependent atrophy. This relationship extended to higher Braak stage regions with increasing Aß burden. Longitudinal MTL atrophy mediated the LC-MTL connectivity-cognition relationship. Our findings mirror the animal data on MTL atrophy following NE signal dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Locus Coeruleus , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Masculino , Femenino , Atrofia/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Estudios Transversales , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Estudios Longitudinales , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología
11.
Nat Aging ; 4(5): 625-637, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664576

RESUMEN

Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Locus Coeruleus , Tomografía de Emisión de Positrones , Proteínas tau , Locus Coeruleus/metabolismo , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Cognición/fisiología , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética , Anciano de 80 o más Años , Lóbulo Temporal/metabolismo , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología
12.
Mol Psychiatry ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355788

RESUMEN

The locus coeruleus-noradrenaline system regulates brain-wide neural activity involved in cognition and behavior. Integrity of this subcortical neuromodulatory system is proposed to be a substrate of cognitive reserve that may be strengthened by lifetime cognitive and social activity. Conversely, accumulation of tau tangles in the brainstem locus coeruleus nuclei is recently studied as a very early marker of Alzheimer's disease (AD) pathogenesis and cognitive vulnerability, even among older adults without cognitive impairment or significant cerebral AD pathologies. This clinical-pathologic study examined whether locus coeruleus tangle density was cross-sectionally associated with lower antemortem cognitive performance and social activity among 142 cognitively unimpaired and impaired older adults and whether social activity, a putative reserve factor, mediated the association of tangle density and cognition. We found that greater locus coeruleus tangle density was associated with lower social activity for the whole sample and in the cognitively unimpaired group alone and these associations were independent of age, sex, education, depressive symptoms, and burden of cerebral amyloid and tau. The association of locus coeruleus tangle density with lower cognitive performance was partially mediated by level of social activity. These findings implicate the locus coeruleus-noradrenaline system in late-life social function and support that locus coeruleus tangle pathology is associated with lower levels of social activity, independent of cerebral AD pathologies, and specifically among older adults who are cognitively unimpaired. Early brainstem pathology may impact social function, and level of social function, in turn, influences cognition, prior to canonical stages of AD.

13.
Ann Neurol ; 95(4): 653-664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407546

RESUMEN

OBJECTIVE: While studies suggested that locus coeruleus (LC) neurodegeneration contributes to sleep-wake dysregulation in Alzheimer's disease (AD), the association between LC integrity and circadian rest-activity patterns remains unknown. Here, we investigated the relationships between 24-hour rest-activity rhythms, cognitive trajectories, and autopsy-derived LC integrity in older adults with and without cortical AD neuropathology. METHODS: This retrospective study leveraged multi-modal data from participants of the longitudinal clinical-pathological Rush Memory and Aging Project. Indices of 24-hour rest-activity rhythm fragmentation (intradaily variability) and stability (interdaily stability) were extracted from annual actigraphic recordings, and cognitive trajectories were computed from annual cognitive evaluations. At autopsy, LC neurodegeneration was determined by the presence of hypopigmentation, and cortical AD neuropathology was assessed. Contributions of comorbid pathologies (Lewy bodies, cerebrovascular pathology) were evaluated. RESULTS: Among the 388 cases included in the study sample (age at death = 92.1 ± 5.9 years; 273 women), 98 (25.3%) displayed LC hypopigmentation, and 251 (64.7%) exhibited cortical AD neuropathology. Logistic regression models showed that higher rest-activity rhythm fragmentation, measured up to ~7.1 years before death, was associated with increased risk to display LC neurodegeneration at autopsy (odds ratio [OR] = 1.46, 95% confidence interval [CI95%]: 1.16-1.84, pBONF = 0.004), particularly in individuals with cortical AD neuropathology (OR = 1.56, CI95%: 1.15-2.15, pBONF = 0.03) and independently of comorbid pathologies. In addition, longitudinal increases in rest-activity rhythm fragmentation partially mediated the association between LC neurodegeneration and cognitive decline (estimate = -0.011, CI95%: -0.023--0.002, pBONF = 0.03). INTERPRETATION: These findings highlight the LC as a neurobiological correlate of sleep-wake dysregulation in AD, and further underscore the clinical relevance of monitoring rest-activity patterns for improved detection of at-risk individuals. ANN NEUROL 2024;95:653-664.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Hipopigmentación , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Locus Coeruleus/patología , Estudios Retrospectivos , Disfunción Cognitiva/patología , Hipopigmentación/patología , Autopsia , Ritmo Circadiano/fisiología
14.
Cerebellum ; 23(2): 802-832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37428408

RESUMEN

Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Anciano , Estudios Transversales , Consenso , Calidad de Vida , Cerebelo/patología , Envejecimiento , Imagen por Resonancia Magnética/métodos
15.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37968130

RESUMEN

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Masculino , Humanos , Femenino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas tau , Estudios Prospectivos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Disfunción Cognitiva/diagnóstico por imagen , Biomarcadores , Atrofia , Tomografía de Emisión de Positrones
16.
J Sleep Res ; : e14085, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904313

RESUMEN

Light triggers numerous non-image-forming, or non-visual, biological effects. The brain correlates of these non-image-forming effects have been investigated, notably using magnetic resonance imaging and short light exposures varying in irradiance and spectral quality. However, it is not clear whether non-image-forming responses estimation may be biased by having light in sequential blocks, for example, through a potential carryover effect of one light onto the next. We reasoned that pupil light reflex was an easy readout of one of the non-image-forming effects of light that could be used to address this issue. We characterised the sustained pupil light reflex in 13-16 healthy young individuals under short light exposures during three distinct cognitive processes (executive, emotional and attentional). Light conditions pseudo-randomly alternated between monochromatic orange light (0.16 melanopic equivalent daylight illuminance lux) and polychromatic blue-enriched white light of three different levels (37, 92, 190 melanopic equivalent daylight illuminance lux). As expected, higher melanopic irradiance was associated with larger sustained pupil light reflex in each cognitive domain. This result was stable over the light sequence under higher melanopic irradiance levels compared with lower ones. Exploratory frequency-domain analyses further revealed that sustained pupil light reflex was more variable under lower melanopic irradiance levels. Importantly, sustained pupil light reflex varied across tasks independently of the light condition, pointing to a potential impact of light history and/or cognitive context on sustained pupil light reflex. Together, our results emphasise that the distinct contribution and adaptation of the different retinal photoreceptors influence the non-image-forming effects of light and therefore potentially their brain correlates.

17.
Elife ; 122023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650882

RESUMEN

The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging, and whether it is associated with cognition and mood. Here, we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years of age (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project [HCP] 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory, and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography, and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale (HADS) ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.


Asunto(s)
Afecto , Locus Coeruleus , Humanos , Locus Coeruleus/diagnóstico por imagen , Envejecimiento , Núcleo Celular , Cognición
18.
Front Neuroimaging ; 2: 1207844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554637

RESUMEN

Introduction: The brainstem locus coeruleus (LC) influences a broad range of brain processes, including cognition. The so-called LC contrast is an accepted marker of the integrity of the LC that consists of a local hyperintensity on specific Magnetic Resonance Imaging (MRI) structural images. The small size of the LC has, however, rendered its functional characterization difficult in humans, including in aging. A full characterization of the structural and functional characteristics of the LC in healthy young and late middle-aged individuals is needed to determine the potential roles of the LC in different medical conditions. Here, we wanted to determine whether the activation of the LC in a mismatch negativity task changes in aging and whether the LC functional response was associated to the LC contrast. Methods: We used Ultra-High Field (UHF) 7-Tesla functional MRI (fMRI) to record brain response during an auditory oddball task in 53 healthy volunteers, including 34 younger (age: 22.15y ± 3.27; 29 women) and 19 late middle-aged (age: 61.05y ± 5.3; 14 women) individuals. Results: Whole-brain analyses confirmed brain responses in the typical cortical and subcortical regions previously associated with mismatch negativity. When focusing on the brainstem, we found a significant response in the rostral part of the LC probability mask generated based on individual LC images. Although bilateral, the activation was more extensive in the left LC. Individual LC activity was not significantly different between young and late middle-aged individuals. Importantly, while the LC contrast was higher in older individuals, the functional response of the LC was not significantly associated with its contrast. Discussion: These findings may suggest that the age-related alterations of the LC structural integrity may not be related to changes in its functional response. The results further suggest that LC responses may remain stable in healthy individuals aged 20 to 70.

19.
Neurology ; 101(12): e1206-e1217, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37491329

RESUMEN

BACKGROUND AND OBJECTIVES: The predictable Braak staging scheme suggests that cortical tau progression may be related to synaptically connected neurons. Animal and human neuroimaging studies demonstrated that changes in neuronal activity contribute to tau spreading. Whether similar mechanisms explain tau progression from the locus coeruleus (LC), a tiny noradrenergic brainstem nucleus involved in novelty, learning, and memory and among the earliest regions to accumulate tau, has not yet been established. We aimed to investigate whether novelty-related LC activity was associated with the accumulation of cortical tau and its implications for cognitive decline. METHODS: We combined functional MRI data of a novel vs repeated face-name learning paradigm, [18F]-FTP-PET, [11C]-PiB-PET, and longitudinal cognitive data from 92 well-characterized older individuals in the Harvard Aging Brain Study. We related novelty vs repetition LC activity to cortical tau deposition and to longitudinal decline in memory, executive function, and the Preclinical Alzheimer Disease Cognitive Composite (version 5; PACC5). Structural equation modeling was used to examine whether entorhinal cortical (EC) tau mediated the relationship between LC activity and cognitive decline and whether this depended on beta-amyloid deposition. RESULTS: The participants' average age at baseline was 69.67 ± 10.14 years. Fifty-one participants were female. Ninety-one participants were cognitively normal (CDR global = 0), and one participant had mild cognitive impairment (CDR global = 0.5) at baseline. Lower novelty-related LC activity was specifically related to greater tau deposition in the medial-lateral temporal cortex and steeper memory decline. LC activity during novelty vs repetition was not related to executive dysfunction or decline on the PACC5. The relationship between LC activity and memory decline was partially mediated by EC tau, particularly in individuals with elevated beta-amyloid deposition. DISCUSSION: Our results suggested that lower novelty-related LC activity is associated with the emergence of EC tau and that the downstream effects of this LC-EC pathway on memory decline also require the presence of elevated beta-amyloid. Longitudinal studies are required to investigate whether optimal LC activity has the potential to delay tau spread and memory decline, which may have implications for designing targeted interventions promoting resilience.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Enfermedad de Alzheimer/metabolismo , Locus Coeruleus/diagnóstico por imagen , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/psicología , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología , Tomografía de Emisión de Positrones/métodos
20.
Neuroimage Clin ; 39: 103479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494758

RESUMEN

INTRODUCTION: Neuromelanin related signal changes in catecholaminergic nuclei are considered as a promising MRI biomarker in Parkinson's disease (PD). Until now, most studies have investigated the substantia nigra (SN), while signal changes might be more prominent in the locus coeruleus (LC). Ultra-high field MRI improves the visualisation of these small brainstem regions and might support the development of imaging biomarkers in PD. OBJECTIVES: To compare signal intensity of the SN and LC on Magnetization Transfer MRI between PD patients and healthy controls (HC) and to explore its association with cognitive performance in PD. METHODS: This study was conducted using data from the TRACK-PD study, a longitudinal 7T MRI study. A total of 78 early-stage PD patients and 36 HC were included. A mask for the SN and LC was automatically segmented and manually corrected. Neuromelanin related signal intensity of the SN and LC was compared between PD and HC. RESULTS: PD participants showed a lower contrast-to-noise ratio (CNR) in the right SN (p = 0.029) and left LC (p = 0.027). After adding age as a confounder, the CNR of the right SN did not significantly differ anymore between PD and HC (p = 0.055). Additionally, a significant positive correlation was found between the SN CNR and memory function. DISCUSSION: This study confirms that neuromelanin related signal intensity of the LC differs between early-stage PD patients and HC. No significant difference was found in the SN. This supports the theory of bottom-up disease progression in PD. Furthermore, loss of SN integrity might influence working memory or learning capabilities in PD patients.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Locus Coeruleus/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Melaninas , Biomarcadores , Sustancia Negra/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA