Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982734

RESUMEN

The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.


Asunto(s)
Carcinógenos , Neoplasias , Humanos , Carcinógenos/toxicidad , Pruebas de Carcinogenicidad/métodos , Transformación Celular Neoplásica/genética , Carcinogénesis/genética
2.
Front Toxicol ; 4: 880818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795225

RESUMEN

Cytochrome P450 (CYP) enzymes play a key role in the metabolism of both xenobiotics and endogenous chemicals, and the activity of some CYP isoforms are susceptible to induction and/or inhibition by certain chemicals. As CYP induction/inhibition can bring about significant alterations in the level of in vivo exposure to CYP substrates and metabolites, CYP induction/inhibition data is needed for regulatory chemical toxicity hazard assessment. On the basis of available human in vivo pharmaceutical data, a draft Organisation for Economic Co-operation and Development Test Guideline (TG) for an in vitro CYP HepaRG test method that is capable of detecting the induction of four human CYPs (CYP1A1/1A2, 2B6, and 3A4), has been developed and validated for a set of pharmaceutical proficiency chemicals. However to support TG adoption, further validation data was requested to demonstrate the ability of the test method to also accurately detect CYP induction mediated by industrial and pesticidal chemicals, together with an indication on regulatory uses of the test method. As part of "GOLIATH", a European Union Horizon-2020 funded research project on metabolic disrupting chemical testing approaches, work is underway to generate supplemental validated data for an additional set of chemicals with sufficient diversity to allow for the approval of the guideline. Here we report on the process of proficiency chemical selection based on a targeted literature review, the selection criteria and considerations required for acceptance of proficiency chemical selection for OECD TG development (i.e. structural diversity, range of activity, relevant chemical sectors, global restrictions etc). The following 13 proposed proficiency chemicals were reviewed and selected as a suitable set for use in the additional validation experiments: tebuconazole, benfuracarb, atrazine, cypermethrin, chlorpyrifos, perfluorooctanoic acid, bisphenol A, N,N-diethyl-m-toluamide, benzo-[a]-pyrene, fludioxonil, malathion, triclosan, and caffeine. Illustrations of applications of the test method in relation to endocrine disruption and non-genotoxic carcinogenicity are provided.

3.
Front Genet ; 11: 579964, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240326

RESUMEN

As the novel coronavirus disease sweeps across the world, there is growing speculation on the role that atmospheric factors may have played on the different distribution of SARS-CoV-2, and on the epidemiological characteristics of COVID-19. Knowing the role that environmental factors play in influenza virus outbreaks, environmental pollution and, in particular, atmospheric airborne (particulate matter, PM) has been considered as a potential key factor in the spread and mortality of COVID-19. A possible role of the PM as the virus carrier has also been debated. The role of PM in exacerbating respiratory and cardiovascular disease has been well recognized. Accumulating evidence support the hypothesis that PM can trigger inflammatory response at molecular, cellular and organ levels. On this basis, we developed the hypothesis that PM may play a role as a booster of COVID-19 rather than as a carrier of SARS-CoV-2. To support our hypothesis, we analyzed the molecular signatures detected in cells exposed to PM samples collected in one of the most affected areas by the COVID-19 outbreak, in Italy. T47D human breast adenocarcinoma cells were chosen to explore the global gene expression changes induced by the treatment with organic extracts of PM 2.5. The analysis of the KEGG's pathways showed modulation of several gene networks related to the leucocyte transendothelial migration, cytoskeleton and adhesion system. Three major biological process were identified, including coagulation, growth control and immune response. The analysis of the modulated genes gave evidence for the involvement of PM in the endothelial disease, coagulation disorders, diabetes and reproductive toxicity, supporting the hypothesis that PM, directly or through molecular interplay, affects the same molecular targets as so far known for SARS-COV-2, contributing to the cytokines storm and to the aggravation of the symptoms triggered by COVID-19. We provide evidence for a plausible cooperation of receptors and transmembrane proteins, targeted by PM and involved in COVID-19, together with new insights into the molecular interplay of chemicals and pathogens that could be of importance for sustaining public health policies and developing new therapeutic approaches.

4.
Epidemiol Prev ; 44(5-6 Suppl 2): 169-182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33412808

RESUMEN

As the Coronavirus situation (COVID-19) continues to evolve, many questions concerning the factors relating to the diffusion and severity of the disease remain unanswered.Whilst opinions regarding the weight of evidence for these risk factors, and the studies published so far are often inconclusive or offer contrasting results, the role of comorbidities in the risk of serious adverse outcomes in patients affected with COVID-19 appears to be evident since the outset. Hypertension, diabetes, and obesity are under discussion as important factors affecting the severity of disease. Air pollution has been considered to play a role in the diffusion of the virus, in the propagation of the contagion, in the severity of symptoms, and in the poor prognosis. Accumulating evidence supports the hypothesis that environmental particulate matter (PM) can trigger inflammatory responses at molecular, cellular, and organ levels, sustaining respiratory, cardiovascular, and dysmetabolic diseases.To better understand the intricate relationships among pre-existing conditions, PM, and viral infection, we examined the response at the molecular level of T47D human breast adenocarcinoma cells exposed to different fractions of PM. T47D cells express several receptors, including the aryl hydrocarbon receptor (AhR), and ACE2, the main - but not the only - receptor for SARS-CoV-2 entry.PM samples were collected in an urban background site located in the Northern area of the City of Bologna (Emilia-Romagna Region, Northern Italy) during winter 2013. T47D cells were exposed to organic or aqueous (inorganic) extracts at the final concentration of 8 m3 for a 4-hour duration. Both the concentration and the exposure time were chosen to resemble an average outdoor exposure. RNA was extracted from cells, purified and hybridised on 66k microarray slides from Agilent.The lists of differentially expressed genes in PM organic extracts were evaluated by using Metacore, and an enrichment analysis was performed to identify pathways maps, process networks, and disease by biomarkers altered after T47D treatment.The analysis of the modulated genes gave evidence for the involvement of PM in dysmetabolic diseases, including diabetes and obesity, and hypertension through the activation of the aryl hydrocarbon receptor (AhR) canonical pathway.On the basis of current knowledge, existing data, and exploratory experimental evidence, we tease out the likely molecular interplay that can ultimately tip the disease outcome into severity. Looking beyond ACE2, several additional key markers are identified. Disruption of these targets worsens pre-existing conditions and/or exacerbates the adverse effects induced by SARS-CoV-2 infection. Whilst appropriately designed, epidemiological studies are very much needed to investigate these associations based on our hypothesis of investigation, by reviewing recent experimental and epidemiological evidence, here we speculate and provide new insights on the possible role of environmental pollution in the exacerbation of effects by SARS-CoV-2 and other respiratory viruses. This work is intended to assist in the development of appropriate investigative approaches to protect public health.


Asunto(s)
Contaminación del Aire/efectos adversos , COVID-19/epidemiología , Material Particulado/efectos adversos , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/fisiología , COVID-19/etiología , Línea Celular Tumoral , Comorbilidad , Coronaviridae/fisiología , Citocromo P-450 CYP1A1/fisiología , Diabetes Mellitus/epidemiología , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipertensión/epidemiología , Hipertensión/genética , Hipertensión/metabolismo , Inflamación/epidemiología , Inflamación/genética , Inflamación/metabolismo , Italia , Obesidad/epidemiología , Obesidad/genética , Obesidad/metabolismo , Material Particulado/farmacología , Receptores de Hidrocarburo de Aril/fisiología , Receptores Virales/fisiología , Riesgo , SARS-CoV-2/ultraestructura , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA