Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Forensic Sci Int Genet ; 72: 103089, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905753

RESUMEN

Biological trace samples consisting of very few cells pose a challenge to conventional forensic genetic DNA analysis. RNA may be an alternative to DNA when handling low template samples. Whereas each cell only contains two copies of an autosomal DNA segment, the transcriptome retains much of the genomic variation replicated in abundant RNA fragments. In this study, we describe the development of a prototype RNA-based SNP selection set for forensic human identification from low template samples (50 pg gDNA). Whole blood from a subset of the Danish population (41 individuals) and blood stains subjected to degradation at room temperature for up to two weeks were analysed by whole transcriptome shotgun sequencing. Concordance was determined by DNA genotyping with the Infinium Omni5-4 SNP chip. In the 100 protein-coding genes with the most reads, 5214 bi-allelic SNPs with gnomAD minor allele frequencies > 0.1 in the African/African American, East Asian, and (non-Finnish) European populations were identified. Of these, 24 SNPs in 21 genes passed screening in whole blood and degraded blood stains, with a resulting mean match probability of 4.5 ∙ 10-9. Additionally, ancestry informative SNPs and SNPs in genes useful for body fluid identification were identified in the transcriptome. Consequently, shotgun sequencing of RNA from low template samples may be used for a vast host of forensic genetics purposes, including simultaneous human and body fluid identification, leading to direct donor identification in the identified body fluid.


Asunto(s)
Polimorfismo de Nucleótido Simple , Humanos , Transcriptoma , Frecuencia de los Genes , Genética Forense/métodos , Dermatoglifia del ADN , Dinamarca , Degradación Necrótica del ADN , Manchas de Sangre , Grupos Raciales/genética
2.
PLoS One ; 19(5): e0299557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718072

RESUMEN

The continued development in methylome analysis has enabled a more precise assessment of DNA methylation, but treatment of target tissue prior to analysis may affect DNA analysis. Prediction of age based on methylation levels in the genome (DNAmAge) has gained much interest in disease predisposition (biological age estimation), but also in chronological donor age estimation in crime case samples. Various epigenetic clocks were designed to predict the age. However, it remains unknown how the storage of the tissues affects the DNAmAge estimation. In this study, we investigated the storage method impact of DNAmAge by the comparing the DNAmAge of the two commonly used storage methods, freezing and formalin-fixation and paraffin-embedding (FFPE) to DNAmAge of fresh tissue. This was carried out by comparing paired heart tissue samples of fresh tissue, samples stored by freezing and FFPE to chronological age and whole blood samples from the same individuals. Illumina EPIC beadchip array was used for methylation analysis and the DNAmAge was evaluated with the following epigenetic clocks: Horvath, Hannum, Levine, Horvath skin+blood clock (Horvath2), PedBE, Wu, BLUP, EN, and TL. We observed differences in DNAmAge among the storage conditions. FFPE samples showed a lower DNAmAge compared to that of frozen and fresh samples. Additionally, the DNAmAge of the heart tissue was lower than that of the whole blood and the chronological age. This highlights caution when evaluating DNAmAge for FFPE samples as the results were underestimated compared with fresh and frozen tissue samples. Furthermore, the study also emphasizes the need for a DNAmAge model based on heart tissue samples for an accurate age estimation.


Asunto(s)
Metilación de ADN , Formaldehído , Miocardio , Adhesión en Parafina , Fijación del Tejido , Humanos , Adhesión en Parafina/métodos , Formaldehído/química , Miocardio/metabolismo , Fijación del Tejido/métodos , Masculino , Adulto , Femenino , Persona de Mediana Edad , Criopreservación/métodos , Adolescente , Anciano , Adulto Joven
3.
Sci Rep ; 13(1): 16381, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773256

RESUMEN

Untreated fresh cardiac tissue is the optimal tissue material for investigating DNA methylation patterns of cardiac biology and diseases. However, fresh tissue is difficult to obtain. Therefore, tissue stored as frozen or formalin-fixed, paraffin-embedded (FFPE) is widely used for DNA methylation studies. It is unknown whether storage conditions alter the DNA methylation in cardiac tissue. In this study, we compared the DNA methylation patterns of fresh, frozen, and FFPE cardiac tissue to investigate if the storage method affected the DNA methylation results. We used the Infinium MethylationEPIC assay to obtain genome-wide methylation levels in fresh, frozen, and FFPE tissues from nine individuals. We found that the DNA methylation levels of 21.4% of the examined CpG sites were overestimated in the FFPE samples compared to that of fresh and frozen tissue, whereas 5.7% were underestimated. Duplicate analyses of the DNA methylation patterns showed high reproducibility (precision) for frozen and FFPE tissues. In conclusion, we found that frozen and FFPE tissues gave reproducible DNA methylation results and that frozen and fresh tissues gave similar results.


Asunto(s)
Metilación de ADN , Formaldehído , Humanos , Fijación del Tejido/métodos , Adhesión en Parafina/métodos , Reproducibilidad de los Resultados
4.
PLoS One ; 18(3): e0283159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36989279

RESUMEN

The use of fresh tissue for molecular studies is preferred but often impossible. Instead, frozen or formalin-fixed, paraffin-embedded (FFPE) tissues are widely used and constitute valuable resources for retrospective studies. We assessed the utility of cardiac tissue stored in different ways for gene expression analyses by whole transcriptome sequencing of paired fresh, frozen, and FFPE tissues. RNA extracted from FFPE was highly degraded. Sequencing of RNA from FFPE tissues yielded higher proportions of intronic and intergenic reads compared to RNA from fresh and frozen tissues. The global gene expression profiles varied with the storage conditions, particularly mitochondrial and long non-coding RNAs. However, we observed high correlations among protein-coding transcripts (ρ > 0.94) with the various storage conditions. We did not observe any significant storage effect on the allele-specific gene expression. However, FFPE had statistically significantly (p < 0.05) more discordant variant calls compared to fresh and frozen tissue. In conclusion, we found that frozen and FFPE tissues can be used for reliable gene expression analyses, provided that proper quality control is performed and caution regarding the technical variability is withheld.


Asunto(s)
Perfilación de la Expresión Génica , ARN , Secuenciación del Exoma , Adhesión en Parafina , Estudios Retrospectivos , Fijación del Tejido , ARN/genética , Transcriptoma , Formaldehído
5.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801838

RESUMEN

Sudden cardiac death (SCD) is a diagnostic challenge in forensic medicine. In a relatively large proportion of the SCDs, the deaths remain unexplained after autopsy. This challenge is likely caused by unknown disease mechanisms. Changes in DNA methylation have been associated with several heart diseases, but the role of DNA methylation in SCD is unknown. In this study, we investigated DNA methylation in two SCD subtypes, sudden unexplained death (SUD) and sudden unexpected death in epilepsy (SUDEP). We assessed DNA methylation of more than 850,000 positions in cardiac tissue from nine SUD and 14 SUDEP cases using the Illumina Infinium MethylationEPIC BeadChip. In total, six differently methylated regions (DMRs) between the SUD and SUDEP cases were identified. The DMRs were located in proximity to or overlapping genes encoding proteins that are a part of the glutathione S-transferase (GST) superfamily. Whole genome sequencing (WGS) showed that the DNA methylation alterations were not caused by genetic changes, while whole transcriptome sequencing (WTS) showed that DNA methylation was associated with expression levels of the GSTT1 gene. In conclusion, our results indicate that cardiac DNA methylation is similar in SUD and SUDEP, but with regional differential methylation in proximity to GST genes.


Asunto(s)
Metilación de ADN , Muerte Súbita Cardíaca/etiología , Predisposición Genética a la Enfermedad/etiología , Glutatión Transferasa/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Muerte Súbita e Inesperada en la Epilepsia/etiología , Adolescente , Adulto , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos , Adulto Joven
6.
PLoS One ; 15(9): e0239850, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986766

RESUMEN

Massively parallel sequencing (MPS) has revolutionised clinical genetics and research within human genetics by enabling the detection of variants in multiple genes in several samples at the same time. Today, multiple approaches for MPS of DNA are available, including targeted gene sequencing (TGS) panels, whole exome sequencing (WES), and whole genome sequencing (WGS). As MPS is becoming an integrated part of the work in genetic laboratories, it is important to investigate the variant detection performance of the various MPS methods. We compared the results of single nucleotide variant (SNV) detection of three MPS methods: WGS, WES, and HaloPlex target enrichment sequencing (HES) using matched DNA of 10 individuals. The detection performance was investigated in 100 genes associated with cardiomyopathies and channelopathies. The results showed that WGS overall performed better than those of WES and HES. WGS had a more uniform and widespread coverage of the investigated regions compared to WES and HES, which both had a right-skewed coverage distribution and difficulties in covering regions and genes with high GC-content. WGS and WES showed roughly the same high sensitivities for detection of SNVs, whereas HES showed a lower sensitivity due to a higher number of false negative results.


Asunto(s)
Secuenciación del Exoma/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple , Alelos , Cardiomiopatías/genética , Canalopatías/genética , Exoma , Genoma Humano , Genotipo , Humanos , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA