Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Exp Med ; 221(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39212656

RESUMEN

A growing number of patients presenting severe combined immunodeficiencies attributed to monoallelic RAC2 variants have been identified. The expression of the RHO GTPase RAC2 is restricted to the hematopoietic lineage. RAC2 variants have been described to cause immunodeficiencies associated with high frequency of infection, leukopenia, and autoinflammatory features. Here, we show that specific RAC2 activating mutations induce the NLRP3 inflammasome activation leading to the secretion of IL-1ß and IL-18 from macrophages. This activation depends on the activation state of the RAC2 variant and is mediated by the downstream kinase PAK1. Inhibiting the RAC2-PAK1-NLRP3 inflammasome pathway might be considered as a potential treatment for these patients.


Asunto(s)
Mutación con Ganancia de Función , Inflamasomas , Interleucina-1beta , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína RCA2 de Unión a GTP , Quinasas p21 Activadas , Proteínas de Unión al GTP rac , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Animales , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Ratones , Interleucina-18/genética , Interleucina-18/metabolismo , Transducción de Señal
2.
Cell Mol Biol Lett ; 29(1): 98, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977956

RESUMEN

Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.


Asunto(s)
Ferroptosis , Leucemia Mieloide Aguda , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Humanos , Linaje de la Célula/genética , Ferroptosis/genética , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética
3.
Pharmacology ; 109(4): 216-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569476

RESUMEN

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.


Asunto(s)
Diferenciación Celular , Autofagia Mediada por Chaperones , Proteínas del Choque Térmico HSC70 , Leucemia Promielocítica Aguda , Tretinoina , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Tretinoina/farmacología , Autofagia Mediada por Chaperones/efectos de los fármacos , Línea Celular Tumoral , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSC70/genética , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Antineoplásicos/farmacología
4.
Bone Marrow Transplant ; 59(7): 957-964, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509196

RESUMEN

Malnutrition increases the risk of non-relapse mortality after allogeneic stem cell transplantation (aHSCT). Here are the results of the ALLONUT clinical trial designed to improve the nutritional outcome of patients receiving aHSCT. ALLONUT is a prospective open label phase 2 clinical trial assessing the efficacy of a close tailored nutritional support and management with traditional and original solutions to improve patients nutritional status following aHSCT. Nutritional status evaluation was performed before transplantation, on Day 0, 30, 100 and one year after transplantation. The study involved 70 patients treated by aHSCT. 10% of patients were moderately or severely malnutrition at baseline and 26.9 were severely malnutrition at D30. Patients' nutritional status improved thanks to the cooking classes and the personalized outpatient nutrition program. At D100, 23% were still malnutrition, while only 10.8% were severely malnutrition one year after transplantation. The QLQ-C30 show that quality of life (QoL) decreased until D30, and improve to reach the pre-transplant level on D100 before exceeding it on D360. The study confirmed that a close, personalized nutritional program combining traditional and original measures can improve both nutritional status and QoL for patients suffering from moderate or severe malnutrition after aHCST.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Estado Nutricional , Calidad de Vida , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Trasplante de Células Madre Hematopoyéticas/métodos , Desnutrición/etiología , Desnutrición/terapia , Trasplante Homólogo/métodos , Estudios Prospectivos , Anciano , Aloinjertos
5.
J Exp Clin Cancer Res ; 43(1): 86, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504270

RESUMEN

BACKGROUND: In clear cell renal cell carcinoma (ccRCC), first-line treatment combines nivolumab (anti-PD-1) and ipilimumab (anti-CTLA4), yielding long-term remissions but with only a 40% success rate. Our study explored the potential of enhancing ccRCC treatment by concurrently using CXCR2 inhibitors alongside immunotherapies. METHODS: We analyzed ELR + CXCL levels and their correlation with patient survival during immunotherapy. RCT001, a unique CXCR2 inhibitor, was examined for its mechanism of action, particularly its effects on human primary macrophages. We tested the synergistic impact of RCT001 in combination with immunotherapies in both mouse models of ccRCC and human ccRCC in the presence of human PBMC. RESUTS: Elevated ELR + CXCL cytokine levels were found to correlate with reduced overall survival during immunotherapy. RCT001, our optimized compound, acted as an inverse agonist, effectively inhibiting angiogenesis and reducing viability of primary ccRCC cells. It redirected M2-like macrophages without affecting M1-like macrophage polarization directed against the tumor. In mouse models, RCT001 enhanced the efficacy of anti-CTLA4 + anti-PD1 by inhibiting tumor-associated M2 macrophages and tumor-associated neutrophils. It also impacted the activation of CD4 T lymphocytes, reducing immune-tolerant lymphocytes while increasing activated natural killer and dendritic cells. Similar effectiveness was observed in human RCC tumors when RCT001 was combined with anti-PD-1 treatment. CONCLUSIONS: RCT001, by inhibiting CXCR2 through its unique mechanism, effectively suppresses ccRCC cell proliferation, angiogenesis, and M2 macrophage polarization. This optimization potentiates the efficacy of immunotherapy and holds promise for significantly improving the survival prospects of metastatic ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Agonismo Inverso de Drogas , Leucocitos Mononucleares/patología , Inmunoterapia
6.
Front Immunol ; 14: 1178337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143666

RESUMEN

Macrophages are immune cells that originate from embryogenesis or from the differentiation of monocytes. They can adopt numerous phenotypes depending on their origin, tissue distribution and in response to different stimuli and tissue environment. Thus, in vivo, macrophages are endowed with a continuum of phenotypes that are rarely strictly pro-inflammatory or anti-inflammatory and exhibit a broad expression profile that sweeps over the whole polarization spectrum. Schematically, three main macrophage subpopulations coexist in human tissues: naïve macrophages also called M0, pro-inflammatory macrophages referred as M1 macrophages, and anti-inflammatory macrophages also known as M2 macrophages. Naïve macrophages display phagocytic functions, recognize pathogenic agents, and rapidly undergo polarization towards pro or anti-inflammatory macrophages to acquire their full panel of functions. Pro-inflammatory macrophages are widely involved in inflammatory response, during which they exert anti-microbial and anti-tumoral functions. By contrast, anti-inflammatory macrophages are implicated in the resolution of inflammation, the phagocytosis of cell debris and tissue reparation following injuries. Macrophages also play important deleterious or beneficial roles in the initiation and progression of different pathophysiological settings including solid and hematopoietic cancers. A better understanding of the molecular mechanisms involved in the generation, activation and polarization of macrophages is a prerequisite for the development of new therapeutic strategies to modulate macrophages functions in pathological situations.


Asunto(s)
Macrófagos , Neoplasias , Humanos , Monocitos , Fagocitosis , Neoplasias/metabolismo , Antiinflamatorios/farmacología
7.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36835566

RESUMEN

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Asunto(s)
Caspasas , Factor Estimulante de Colonias de Macrófagos , Humanos , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/metabolismo , Caspasa 7/metabolismo , Caspasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , NADPH Oxidasas/metabolismo , Monocitos/metabolismo
8.
Leukemia ; 37(3): 571-579, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36585521

RESUMEN

Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.


Asunto(s)
Leucemia Mieloide , Factores de Transcripción , Niño , Humanos , Caspasa 3 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
9.
Blood ; 141(10): 1209-1220, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36375119

RESUMEN

Understanding the functional role of mutated genes in cancer is required to translate the findings of cancer genomics into therapeutic improvement. BTG1 is recurrently mutated in the MCD/C5 subtype of diffuse large B-cell lymphoma (DLBCL), which is associated with extranodal dissemination. Here, we provide evidence that Btg1 knock out accelerates the development of a lethal lymphoproliferative disease driven by Bcl2 overexpression. Furthermore, we show that the scaffolding protein BCAR1 is a BTG1 partner. Moreover, after BTG1 deletion or expression of BTG1 mutations observed in patients with DLBCL, the overactivation of the BCAR1-RAC1 pathway confers increased migration ability in vitro and in vivo. These modifications are targetable with the SRC inhibitor dasatinib, which opens novel therapeutic opportunities in BTG1 mutated DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/patología , Mutación , Genes cdc , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Sustrato Asociada a CrK/genética , Proteína Sustrato Asociada a CrK/metabolismo
10.
Nat Cancer ; 3(7): 837-851, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668193

RESUMEN

Selinexor is a first-in-class inhibitor of the nuclear exportin XPO1 that was recently approved by the US Food and Drug Administration for the treatment of multiple myeloma and diffuse large B-cell lymphoma. In relapsed/refractory acute myeloid leukemia (AML), selinexor has shown promising activity, suggesting that selinexor-based combination therapies may have clinical potential. Here, motivated by the hypothesis that selinexor's nuclear sequestration of diverse substrates imposes pleiotropic fitness effects on AML cells, we systematically catalog the pro- and anti-fitness consequences of selinexor treatment. We discover that selinexor activates PI3Kγ-dependent AKT signaling in AML by upregulating the purinergic receptor P2RY2. Inhibiting this axis potentiates the anti-leukemic effects of selinexor in AML cell lines, patient-derived primary cultures and multiple mouse models of AML. In a syngeneic, MLL-AF9-driven mouse model of AML, treatment with selinexor and ipatasertib outperforms both standard-of-care chemotherapy and chemotherapy with selinexor. Together, these findings establish drug-induced P2RY2-AKT signaling as an actionable consequence of XPO1 inhibition in AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Carioferinas/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estados Unidos , Proteína Exportina 1
12.
Oncoimmunology ; 11(1): 2015859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251769

RESUMEN

Macrophages are widely distributed innate immune cells that play an indispensable role in a variety of physiologic and pathologic processes, including organ development, host defense, acute and chronic inflammation, solid and hematopoietic cancers. Beyond their inextricable role as conveyors of programmed cell death, we have previously highlighted that caspases exert non-apoptotic functions, especially during the differentiation of monocyte-derived cells in response to CSF-1. Here, we found that non-canonic cleavages of caspases, reflecting their activation, are maintained during IL-4-induced monocyte-derived macrophages polarization. Moreover, Emricasan, a pan-caspase inhibitor that demonstrated promising preclinical activity in various diseases and safely entered clinical testing for the treatment of liver failure, prevents the generation and the anti-inflammatory polarization of monocyte-derived macrophages ex vivo. Interestingly, caspase inhibition also triggered the reprogramming of monocyte-derived cells evidenced by RNA sequencing. Taken together, our findings position Emricasan as a potential alternative to current therapies for reprogramming macrophages in diseases driven by monocyte-derived macrophages.


Asunto(s)
Caspasas , Macrófagos , Inhibidores de Caspasas/metabolismo , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Diferenciación Celular , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo
13.
Cell Rep ; 38(1): 110197, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986346

RESUMEN

AMP-activated protein kinase (AMPK) regulates the balance between cellular anabolism and catabolism dependent on energy resources to maintain proliferation and survival. Small-compound AMPK activators show anti-cancer activity in preclinical models. Using the direct AMPK activator GSK621, we show that the unfolded protein response (UPR) is activated by AMPK in acute myeloid leukemia (AML) cells. Mechanistically, the UPR effector protein kinase RNA-like ER kinase (PERK) represses oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and pyrimidine biosynthesis and primes the mitochondrial membrane to apoptotic signals in an AMPK-dependent manner. Accordingly, in vitro and in vivo studies reveal synergy between the direct AMPK activator GSK621 and the Bcl-2 inhibitor venetoclax. Thus, selective AMPK-activating compounds kill AML cells by rewiring mitochondrial metabolism that primes mitochondria to apoptosis by BH3 mimetics, holding therapeutic promise in AML.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Imidazoles/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Pirimidinonas/farmacología , Sulfonamidas/farmacología , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Apoptosis/fisiología , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Células THP-1 , Células U937 , Adulto Joven
14.
Cancer Res ; 81(14): 3806-3821, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099492

RESUMEN

Overcoming acquired drug resistance is a primary challenge in cancer treatment. Notably, more than 50% of patients with BRAFV600E cutaneous metastatic melanoma (CMM) eventually develop resistance to BRAF inhibitors. Resistant cells undergo metabolic reprogramming that profoundly influences therapeutic response and promotes tumor progression. Uncovering metabolic vulnerabilities could help suppress CMM tumor growth and overcome drug resistance. Here we identified a drug, HA344, that concomitantly targets two distinct metabolic hubs in cancer cells. HA344 inhibited the final and rate-limiting step of glycolysis through its covalent binding to the pyruvate kinase M2 (PKM2) enzyme, and it concurrently blocked the activity of inosine monophosphate dehydrogenase, the rate-limiting enzyme of de novo guanylate synthesis. As a consequence, HA344 efficiently targeted vemurafenib-sensitive and vemurafenib-resistant CMM cells and impaired CMM xenograft tumor growth in mice. In addition, HA344 acted synergistically with BRAF inhibitors on CMM cell lines in vitro. Thus, the mechanism of action of HA344 provides potential therapeutic avenues for patients with CMM and a broad range of different cancers. SIGNIFICANCE: Glycolytic and purine synthesis pathways are often deregulated in therapy-resistant tumors and can be targeted by the covalent inhibitor described in this study, suggesting its broad application for overcoming resistance in cancer.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Proteínas Portadoras/antagonistas & inhibidores , IMP Deshidrogenasa/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/antagonistas & inhibidores , Ribonucleótidos/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Anciano , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Melanoma/enzimología , Melanoma/patología , Ratones , Ratones Desnudos , Distribución Aleatoria , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patología , Hormonas Tiroideas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión a Hormona Tiroide , Melanoma Cutáneo Maligno
15.
Blood Adv ; 5(5): 1523-1534, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33683342

RESUMEN

Dysregulated immune response is the key factor leading to unfavorable coronavirus disease 2019 (COVID-19) outcome. Depending on the pathogen-associated molecular pattern, the NLRP3 inflammasome can play a crucial role during innate immunity activation. To date, studies describing the NLRP3 response during severe acute respiratory syndrome coronavirus 2 infection in patients are lacking. We prospectively monitored caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19. The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients. Unexpectedly, the CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood. In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control. Here, we reveal that NLRP3 inflammasome activation potential differs among myeloid cells and could be used as a biomarker of a COVID-19 patient's evolution. This assay could be a useful tool to predict patient outcome. This trial was registered at www.clinicaltrials.gov as #NCT04385017.


Asunto(s)
COVID-19/sangre , Inflamasomas/metabolismo , Células Mieloides/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Biomarcadores/sangre , COVID-19/inmunología , Estudios de Casos y Controles , Humanos , Inflamasomas/sangre , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación
16.
Mol Cancer ; 20(1): 12, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413419

RESUMEN

Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.


Asunto(s)
Carcinogénesis/patología , Citotoxicidad Inmunológica , Factores Inmunológicos/metabolismo , Integrina beta1/metabolismo , Células Asesinas Naturales/inmunología , Melanoma/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular , Melanoma/patología , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía/metabolismo
17.
Nat Microbiol ; 6(3): 401-412, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33432150

RESUMEN

Inflammasomes are signalling platforms that are assembled in response to infection or sterile inflammation by cytosolic pattern recognition receptors. The consequent inflammasome-triggered caspase-1 activation is critical for the host defence against pathogens. During infection, NLRP3, which is a pattern recognition receptor that is also known as cryopyrin, triggers the assembly of the inflammasome-activating caspase-1 through the recruitment of ASC and Nek7. The activation of the NLRP3 inflammasome is tightly controlled both transcriptionally and post-translationally. Despite the importance of the NLRP3 inflammasome regulation in autoinflammatory and infectious diseases, little is known about the mechanism controlling the activation of NLRP3 and the upstream signalling that regulates the NLRP3 inflammasome assembly. We have previously shown that the Rho-GTPase-activating toxin from Escherichia coli cytotoxic necrotizing factor-1 (CNF1) activates caspase-1, but the upstream mechanism is unclear. Here, we provide evidence of the role of the NLRP3 inflammasome in sensing the activity of bacterial toxins and virulence factors that activate host Rho GTPases. We demonstrate that this activation relies on the monitoring of the toxin's activity on the Rho GTPase Rac2. We also show that the NLRP3 inflammasome is activated by a signalling cascade that involves the p21-activated kinases 1 and 2 (Pak1/2) and the Pak1-mediated phosphorylation of Thr 659 of NLRP3, which is necessary for the NLRP3-Nek7 interaction, inflammasome activation and IL-1ß cytokine maturation. Furthermore, inhibition of the Pak-NLRP3 axis decreases the bacterial clearance of CNF1-expressing UTI89 E. coli during bacteraemia in mice. Taken together, our results establish that Pak1 and Pak2 are critical regulators of the NLRP3 inflammasome and reveal the role of the Pak-NLRP3 signalling axis in vivo during bacteraemia in mice.


Asunto(s)
Bacteriemia/metabolismo , Toxinas Bacterianas/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Bacteriemia/inmunología , Bacteriemia/microbiología , Carga Bacteriana , Toxinas Bacterianas/genética , Escherichia coli/genética , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Inmunidad Innata , Ratones , Fosforilación , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rac/genética , Proteína RCA2 de Unión a GTP
19.
Cancers (Basel) ; 12(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707827

RESUMEN

Background: Cathepsin L (Ctsl) is a cysteine protease mainly located within the endosomal/lysosomal cell compartment. High expression of Ctsl indicates poor prognosis in human breast cancer. However, the cell type-specific Ctsl functions responsible for this association remain elusive. Methods: Because constitutive Ctsl-/- mice develop a complex phenotype, we developed a conditional model allowing for cell type-specific inactivation of Ctsl in mammary epithelium or myeloid cells in the transgenic mouse mammary tumor virus (MMTV)-polyoma middle T (PyMT) breast cancer model. Results: Ctsl ablation in mammary epithelial cells resulted in delayed initiation and end-stage of cancers. The latter displayed large dead cell areas. Inducible in vitro deletion of Ctsl in MMTV-PyMT-derived breast cancer cells revealed expansion of the acidic cell compartment, alteration of intracellular amino acid levels, and impaired mTOR signaling. In consequence, Ctsl-deficient cells exhibited slow growth rates and high apoptosis susceptibility. In contrast to Ctsl-deficient mammary epithelium, selective knockout of Ctsl in myeloid cells had no effects on primary tumors, but promoted lung metastasis formation. Conclusions: Our cell type-specific in vivo analysis provides strong evidence for a cancer cell-intrinsic, tumor-promoting role of Ctsl in primary breast cancer, whereas metastasis is negatively regulated by Ctsl expressed by bone marrow-derived cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA