Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Commun ; 15(1): 3667, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693169

RESUMEN

The precise arrangement and nature of atoms drive electronic phase transitions in condensed matter. To explore this tenuous link, we developed a true biaxial mechanical deformation device working at cryogenic temperatures, compatible with x-ray diffraction and transport measurements, well adapted to layered samples. Here we show that a slight deformation of TbTe3 can have a dramatic influence on its Charge Density Wave (CDW), with an orientational transition from c to a driven by the a/c parameter, a tiny coexistence region near a = c, and without space group change. The CDW transition temperature Tc displays a linear dependence with a / c - 1 while the gap saturates out of the coexistence region. This behaviour is well accounted for within a tight-binding model. Our results question the relationship between gap and Tc in RTe3 systems. This method opens a new route towards the study of coexisting or competing electronic orders in condensed matter.

2.
Phys Rev Lett ; 131(12): 126901, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37802939

RESUMEN

We report on electron spin resonance (ESR) spectroscopy of boron-vacancy (V_{B}^{-}) centers hosted in isotopically engineered hexagonal boron nitride (hBN) crystals. We first show that isotopic purification of hBN with ^{15}N yields a simplified and well-resolved hyperfine structure of V_{B}^{-} centers, while purification with ^{10}B leads to narrower ESR linewidths. These results establish isotopically purified h^{10}B^{15}N crystals as the optimal host material for future use of V_{B}^{-} spin defects in quantum technologies. Capitalizing on these findings, we then demonstrate optically induced polarization of ^{15}N nuclei in h^{10}B^{15}N, whose mechanism relies on electron-nuclear spin mixing in the V_{B}^{-} ground state. This work opens up new prospects for future developments of spin-based quantum sensors and simulators on a two-dimensional material platform.

3.
Phys Rev Lett ; 131(11): 116902, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774304

RESUMEN

Optically active spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of two-dimensional quantum sensing units offering optimal proximity to the sample being probed. In this Letter, we first demonstrate that the electron spin resonance frequencies of boron vacancy centers (V_{B}^{-}) can be detected optically in the limit of few-atomic-layer thick hBN flakes despite the nanoscale proximity of the crystal surface that often leads to a degradation of the stability of solid-state spin defects. We then analyze the variations of the electronic spin properties of V_{B}^{-} centers with the hBN thickness with a focus on (i) the zero-field splitting parameters, (ii) the optically induced spin polarization rate and (iii) the longitudinal spin relaxation time. This Letter provides important insights into the properties of V_{B}^{-} centers embedded in ultrathin hBN flakes, which are valuable for future developments of foil-based quantum sensing technologies.

4.
Nat Commun ; 13(1): 4347, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896526

RESUMEN

Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms. Here we rely on hBN crystals isotopically enriched with either 10B or 11B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared. By analyzing the hyperfine structure of the spin defect while changing the boron isotope, we first confirm that it corresponds to the negatively charged boron-vacancy center ([Formula: see text]). We then show that its spin coherence properties are slightly improved in 10B-enriched samples. This is supported by numerical simulations employing cluster correlation expansion methods, which reveal the importance of the hyperfine Fermi contact term for calculating the coherence time of point defects in hBN. Using cross-relaxation spectroscopy, we finally identify dark electron spin impurities as an additional source of decoherence. This work provides new insights into the properties of [Formula: see text] spin defects, which are valuable for the future development of hBN-based quantum sensing foils.

5.
Struct Dyn ; 9(1): 014502, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38143930

RESUMEN

We use ultrafast electron diffraction to study the out-of-equilibrium dynamics of the charge density wave (CDW) phase transition in GdTe3, a quasi-two-dimensional compound displaying a unidirectional CDW state. Experiments were conducted at different incident fluences and different initial sample temperatures below Tc. We find that following photo-excitation, the system undergoes a non-thermal ultrafast phase transition that occurs in out-of-equilibrium conditions. The intrinsic crystal temperature was estimated at each time delay from the atomic thermal motion, which affects each Bragg peak intensity via the Debye Waller factor. We find that the crystal temperature stabilizes with a 6 ps timescale in a quasi-equilibrium state at temperature Tq.e.. We then relate the recovery time of the CDW and its correlation lengths as a function of Tq.e.. The charge density wave is suppressed in less than a picosecond while its recovery time increases linearly with incident fluence and initial temperature. Our results highlight that the dynamics is strongly determined by the initial sample temperature. In addition, the transient CDW phase recently observed along the transverse direction in LaTe3 and CeTe3 is not observed in GdTe3.

6.
Phys Rev Lett ; 126(8): 083602, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709758

RESUMEN

We report the detection of individual emitters in silicon belonging to seven different families of optically active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the 1.1-1.55 µm range, spanning the O and C telecom bands. We analyze their photoluminescence spectra, dipolar emissions, and optical relaxation dynamics at 10 K. For a specific family, we show a constant emission intensity at saturation from 10 K to temperatures well above the 77 K liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these individual artificial atoms are promising systems to investigate for Si-based quantum technologies.

7.
Nat Commun ; 11(1): 1704, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249777

RESUMEN

Antiferromagnetic thin films are currently generating considerable excitement for low dissipation magnonics and spintronics. However, while tuneable antiferromagnetic textures form the backbone of functional devices, they are virtually unknown at the submicron scale. Here we image a wide variety of antiferromagnetic spin textures in multiferroic BiFeO3 thin films that can be tuned by strain and manipulated by electric fields through room-temperature magnetoelectric coupling. Using piezoresponse force microscopy and scanning NV magnetometry in self-organized ferroelectric patterns of BiFeO3, we reveal how strain stabilizes different types of non-collinear antiferromagnetic states (bulk-like and exotic spin cycloids) as well as collinear antiferromagnetic textures. Beyond these local-scale observations, resonant elastic X-ray scattering confirms the existence of both types of spin cycloids. Finally, we show that electric-field control of the ferroelectric landscape induces transitions either between collinear and non-collinear states or between different cycloids, offering perspectives for the design of reconfigurable antiferromagnetic spin textures on demand.

8.
Nat Mater ; 19(5): 576, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31719690

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Mater ; 19(4): 386-390, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31685944

RESUMEN

Chirality, a foundational concept throughout science, may arise at ferromagnetic domain walls1 and in related objects such as skyrmions2. However, chiral textures should also exist in other types of ferroic materials, such as antiferromagnets, for which theory predicts that they should move faster for lower power3, and ferroelectrics, where they should be extremely small and possess unusual topologies4,5. Here, we report the concomitant observation of antiferromagnetic and electric chiral textures at domain walls in the room-temperature ferroelectric antiferromagnet BiFeO3. Combining reciprocal and real-space characterization techniques, we reveal the presence of periodic chiral antiferromagnetic objects along the domain walls as well as a priori energetically unfavourable chiral ferroelectric domain walls. We discuss the mechanisms underlying their formation and their relevance for electrically controlled topological oxide electronics and spintronics.

11.
Nature ; 549(7671): 252-256, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905889

RESUMEN

Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

12.
Phys Rev Lett ; 118(24): 247401, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28665649

RESUMEN

Femtosecond time-resolved x-ray diffraction is used to study a photoinduced phase transition between two charge density wave (CDW) states in 1T-TaS_{2}, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photoinduced I-CDW phase then develops through a nucleation and growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a nonconservative order parameter.

13.
Nat Commun ; 8: 15765, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28593949

RESUMEN

Magnetic skyrmions are quasiparticle-like textures which are topologically different from other states. Their discovery in systems with broken inversion symmetry sparked the search for materials containing such magnetic phase at room temperature. Their topological properties combined with the chirality-related spin-orbit torques make them interesting objects to control the magnetization at nanoscale. Here we show that a pair of coupled skyrmions of opposite chiralities can be stabilized in a symmetric magnetic bilayer system by combining Dzyaloshinskii-Moriya interaction (DMI) and dipolar coupling effects. This opens a path for skyrmion stabilization with lower DMI. We demonstrate in a device with asymmetric electrodes that such skyrmions can be independently written and shifted by electric current at large velocities. The skyrmionic nature of the observed quasiparticles is confirmed by the gyrotropic force. These results set the ground for emerging spintronic technologies where issues concerning skyrmion stability, nucleation and propagation are paramount.

14.
Nat Commun ; 8: 13917, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067228

RESUMEN

The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.

15.
Phys Rev Lett ; 117(15): 156401, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768359

RESUMEN

We report on time-resolved x-ray diffraction measurements following femtosecond laser excitation in pure bulk chromium. Comparing the evolution of incommensurate charge-density-wave (CDW) and atomic lattice reflections, we show that, a few nanoseconds after laser excitation, the CDW undergoes different structural changes than the atomic lattice. We give evidence for a transient CDW shear strain that breaks the lattice point symmetry. This strain is characteristic of sliding CDWs, as observed in other incommensurate CDW systems, suggesting the laser-induced CDW sliding capability in 3D systems. This first evidence opens perspectives for unconventional laser-assisted transport of correlated charges.

16.
Phys Rev Lett ; 116(4): 043603, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26871331

RESUMEN

We demonstrate coherent population trapping of a single nuclear spin in a room-temperature solid. To this end, we exploit a three-level system with a Λ configuration in the microwave domain, which consists of nuclear spin states addressed through their hyperfine coupling to the electron spin of a single nitrogen-vacancy defect in diamond. Moreover, the Λ-scheme relaxation is externally controlled through incoherent optical pumping and separated in time from consecutive coherent microwave excitations. Such a scheme allows us (i) to monitor the sequential accumulation of population into the dark state and (ii) to reach a novel regime of coherent population trapping dynamics for which periodic arrays of dark resonances can be observed, owing to multiple constructive interferences. This Letter offers new prospects for quantum state preparation, information storage in hybrid quantum systems, and metrology.

17.
Stem Cells Dev ; 25(5): 395-404, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26728561

RESUMEN

Alport syndrome (AS) is a hereditary glomerulopathy caused by a mutation in type IV collagen genes, which disrupts glomerular basement membrane, leading to progressive glomerulosclerosis and end-stage renal failure. There is at present no cure for AS, and cell-based therapies offer promise to improve renal function. In this study, we found that human first trimester fetal chorionic stem cells (CSC) are able to migrate to glomeruli and differentiate down the podocyte lineage in vitro and in vivo. When transplanted into 7-week-old Alport 129Sv-Col4α3(tm1Dec)/J (-/-) mice, a single intraperitoneal injection of CSC significantly lowered blood urea and urine proteinuria levels over the ensuing 2 weeks. In addition, nearly two-thirds of transplanted -/- mice maintained their weight above the 80% welfare threshold, with both males and females weighing more than age-matched nontransplanted -/- mice. This was associated with less renal cortical fibrosis and interstitial inflammation compared to nontransplanted mice as shown by reduction in murine CD4, CD68, and CD45.2 cells. Transplanted CSC homed to glomeruli, where they expressed CR1, VEGFA, SYNAPTOPODIN, CD2AP, and PODOCIN at the RNA level and produced PODOCIN, CD2AP, and COLIVα3 proteins in nontransplanted -/- mice, indicating that CSC have adopted a podocyte phenotype. Together, these data indicate that CSC may be used to delay progression of renal pathology by a combination of anti-inflammatory effects and replacement of the defective resident podocytes.


Asunto(s)
Diferenciación Celular , Corion/citología , Nefritis Hereditaria/terapia , Podocitos/citología , Células Madre/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Corion/trasplante , Técnicas de Cocultivo , Colágeno Tipo IV/farmacología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Fibrosis , Humanos , Inflamación/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Corteza Renal/patología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Nefritis Hereditaria/patología , Fenotipo , Podocitos/efectos de los fármacos , Podocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo
18.
Phys Rev Lett ; 115(23): 236802, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26684133

RESUMEN

We present an experimental and theoretical study exploring surface effects on the evolution of the metal-insulator transition in the model Mott-Hubbard compound Cr-doped V{2}O{3}. We find a microscopic domain formation that is clearly affected by the surface crystallographic orientation. Using scanning photoelectron microscopy and x-ray diffraction, we find that surface defects act as nucleation centers for the formation of domains at the temperature-induced isostructural transition and favor the formation of microscopic metallic regions. A density-functional theory plus dynamical mean-field theory study of different surface terminations shows that the surface reconstruction with excess vanadyl cations leads to doped, and hence more metallic, surface states, which explains our experimental observations.

19.
Nat Commun ; 6: 8603, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26477639

RESUMEN

Reminiscent of the bound character of a qubit's dynamics confined on the Bloch sphere, the observation of a Mollow triplet in the resonantly driven qubit fluorescence spectrum represents one of the founding signatures of quantum electrodynamics. Here we report on its observation in a hybrid spin-nanomechanical system, where a nitrogen-vacancy spin qubit is magnetically coupled to the vibrations of a silicon carbide nanowire. A resonant microwave field turns the originally parametric hybrid interaction into a resonant process, where acoustic phonons are now able to induce transitions between the dressed qubit states, leading to synchronized spin-oscillator dynamics. We further explore the vectorial character of the hybrid coupling to the bidimensional deformations of the nanowire. The demonstrated microwave assisted synchronization of the spin-oscillator dynamics opens novel perspectives for the exploration of spin-dependent forces, the key ingredient for quantum state transfer.

20.
Nat Commun ; 6: 6733, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25828294

RESUMEN

The capacity to propagate magnetic domain walls with spin-polarized currents underpins several schemes for information storage and processing using spintronic devices. A key question involves the internal structure of the domain walls, which governs their response to certain current-driven torques such as the spin Hall effect. Here we show that magnetic microscopy based on a single nitrogen-vacancy defect in diamond can provide a direct determination of the internal wall structure in ultrathin ferromagnetic films under ambient conditions. We find pure Bloch walls in Ta/CoFeB(1 nm)/MgO, while left-handed Néel walls are observed in Pt/Co(0.6 nm)/AlOx. The latter indicates the presence of a sizable interfacial Dzyaloshinskii-Moriya interaction, which has strong bearing on the feasibility of exploiting novel chiral states such as skyrmions for information technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA