Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645201

RESUMEN

The functional effects of an RNA can arise from complex three-dimensional folds known as tertiary structures. However, predicting the tertiary structure of an RNA and whether an RNA adopts distinct tertiary conformations remains challenging. To address this, we developed BASH MaP, a single-molecule dimethyl sulfate (DMS) footprinting method and DAGGER, a computational pipeline, to identify alternative tertiary structures adopted by different molecules of RNA. BASH MaP utilizes potassium borohydride to reveal the chemical accessibility of the N7 position of guanosine, a key mediator of tertiary structures. We used BASH MaP to identify diverse conformational states and dynamics of RNA G-quadruplexes, an important RNA tertiary motif, in vitro and in cells. BASH MaP and DAGGER analysis of the fluorogenic aptamer Spinach reveals that it adopts alternative tertiary conformations which determine its fluorescence states. BASH MaP thus provides an approach for structural analysis of RNA by revealing previously undetectable tertiary structures.

2.
RNA ; 30(5): 468-481, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38531646

RESUMEN

N 6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA, and it has important functions in mRNA regulation. However, our understanding of the specific functions of m6A along with its cytosolic readers, the YTHDF proteins, has changed substantially in recent years. The original view was that different m6A sites within an mRNA could have different functions depending on which YTHDF paralog was bound to it, with bound YTHDF1 inducing translation, while bound YTHDF2 induced mRNA degradation. As a result, each YTHDF was proposed to have unique physiologic roles that arise from their unique binding properties and regulatory effects on mRNA. More recent data have called much of this into question, showing that all m6A sites bind all YTHDF proteins with equal ability, with a single primary function of all three YTHDF proteins to mediate mRNA degradation. Here, we describe the diverse technical concerns that led to the original model being questioned and the newer data that overturned this model and led to the new understanding of m6A and YTHDF function. We also discuss how any remaining questions about the functions of the YTHDF proteins can be readily resolved.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
3.
Nat Commun ; 15(1): 934, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296979

RESUMEN

Genomic DNA exhibits high heterogeneity in terms of its dynamic within the nucleus, its structure and functional roles. CRISPR-based imaging approaches can image genomic loci in living cells. However, conventional CRISPR-based tools involve expressing constitutively fluorescent proteins, resulting in high background and nonspecific nucleolar signal. Here, we construct fluorogenic CRISPR (fCRISPR) to overcome these issues. fCRISPR is designed with dCas9, an engineered sgRNA, and a fluorogenic protein. Fluorogenic proteins are degraded unless they are bound to specific RNA hairpins. These hairpins are inserted into sgRNA, resulting in dCas9: sgRNA: fluorogenic protein ternary complexes that enable fluorogenic DNA imaging. With fCRISPR, we image various genomic DNA in different human cells with high signal-to-noise ratio and sensitivity. Furthermore, fCRISPR tracks chromosomes dynamics and length. fCRISPR also allows DNA double-strand breaks (DSBs) and repair to be tracked in real time. Taken together, fCRISPR offers a high-contrast and sensitive platform for imaging genomic loci.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Humanos , ADN/genética , Genoma , Genómica
4.
RNA ; 30(3): 308-324, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190635

RESUMEN

m6A has different stoichiometry at different positions in different mRNAs. However, the exact stoichiometry of m6A is difficult to measure. Here, we describe SCARPET (site-specific cleavage and radioactive-labeling followed by purification, exonuclease digestion, and thin-layer chromatography), a simple and streamlined biochemical assay for quantifying m6A at any specific site in any mRNA. SCARPET involves a site-specific cleavage of mRNA immediately 5' of an adenosine site in an mRNA. This site is radiolabeled with 32P, and after a series of steps to purify the RNA and to remove nonspecific signals, the nucleotide is resolved by TLC to visualize A and m6A at this site. Quantification of these spots reveals the m6A stoichiometry at the site of interest. SCARPET can be applied to poly(A)-enriched RNA, or preferably purified mRNA, which produces more accurate m6A stoichiometry measurements. We show that sample processing steps of SCARPET can be performed in a single day, and results in a specific and accurate measurement of m6A stoichiometry at specific sites in mRNA. Using SCARPET, we measure exact m6A stoichiometries in specific mRNAs and show that Zika genomic RNA lacks m6A at previously mapped sites. SCARPET will be useful for testing specific sites for their m6A stoichiometry and to assess how m6A stoichiometry changes in different conditions and cellular contexts.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Adenosina/genética , ARN , ARN Mensajero/metabolismo , Nucleótidos , Procesamiento Postranscripcional del ARN , Virus Zika/genética
5.
Nat Chem Biol ; 20(3): 302-313, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37973889

RESUMEN

Proteins and RNA can phase separate from the aqueous cellular environment to form subcellular compartments called condensates. This process results in a protein-RNA mixture that is chemically different from the surrounding aqueous phase. Here, we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and extracts of cellular metabolites and identified metabolites enriched in the condensate phase. Among the most condensate-enriched metabolites were phospholipids, due primarily to the hydrophobicity of their fatty acyl moieties. We found that phospholipids can alter the number and size of phase-separated condensates and in some cases alter their morphology. Finally, we found that phospholipids partition into a diverse set of endogenous condensates as well as artificial condensates expressed in cells. Overall, these data show that many condensates are protein-RNA-lipid mixtures with chemical microenvironments that are ideally suited to facilitate phospholipid biology and signaling.


Asunto(s)
Condensados Biomoleculares , Metaboloma , Espectrometría de Masas , Fosfolípidos , ARN
6.
Cell Chem Biol ; 31(1): 163-176.e5, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-37883972

RESUMEN

A major problem with mRNA therapeutics is that mRNA is usually degraded within a few hours after entering the cytosol. New approaches for in vitro synthesis of circular mRNA have allowed increased levels and duration of protein synthesis from mRNA therapeutics due to the long half-life of circular mRNA. However, it remains difficult to genetically encode circular mRNAs in mammalian cells. Here, we describe the adaptation of the Tornado (Twister-optimized RNA for durable overexpression) system to achieve in-cell synthesis of circular mRNAs. We screen different promoters and internal ribosomal entry sites (IRESs) and identify combinations that result in high levels of circular mRNA and protein expression. We show that these circular mRNAs can be packaged into virus-like particles (VLPs), thus enabling prolonged protein expression. Overall, these data describe a platform for synthesis of circular mRNAs and how these circular mRNAs can improve VLP therapeutics.


Asunto(s)
Biosíntesis de Proteínas , ARN , Animales , ARN Mensajero/genética , Mamíferos/genética
7.
Genes (Basel) ; 14(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137053

RESUMEN

MICAL2 is an actin-regulatory protein that functions through redox modification of actin. Nuclear localized MICAL2 triggers the disassembly of nuclear actin, which subsequently leads to nuclear retention of the actin-binding transcriptional coregulator myocardin-related transcription factor-A (MRTF-A), which leads to the activation of serum response factor (SRF)/MRTF-A-dependent gene transcription. In this study, we show that the secreted signaling protein GAS6 (growth-arrest specific 6) and its cognate receptor Axl, a transmembrane tyrosine kinase, also induce the activation of SRF/MRTF-A and their downstream target genes. We find that serum-induced SRF/MRTF-A-dependent gene expression can be blocked, in part, by the inhibition of Axl signaling. Furthermore, we find that Gas6/Axl-induced SRF/MRTF-A-dependent transcription is dependent on MICAL2. Gas6/Axl promotes cell invasion, which is blocked by MICAL2 knockdown, suggesting that MICAL2 promotes cytoskeletal effects of the Gas6/Axl pathway. We find that Gas/6/Axl signaling promotes the nuclear localization of MICAL2, which may contribute to the ability of Gas6/SRF to augment SRF/MRTF-A-dependent gene transcription. The physiological significance of the Gas6/Axl-MICAL2 signaling pathway described here is supported by the marked gene expression correlation across a broad array of different cancers between MICAL2 and Axl and Gas6, as well as the coexpression of these genes and the known SRF/MRTF-A target transcripts. Overall, these data reveal a new link between Gas6/Axl and SRF/MRTF-A-dependent gene transcription and link MICAL2 as a novel effector of the Gas6/Axl signaling pathway.


Asunto(s)
Actinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Actinas/genética , Actinas/metabolismo , Transducción de Señal , Transcripción Genética
8.
Nat Struct Mol Biol ; 30(10): 1525-1535, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37710015

RESUMEN

Stress granules are biomolecular condensates composed of protein and mRNA. One feature of stress granule-enriched mRNAs is that they are often longer than average. Another feature of stress granule-enriched mRNAs is that they often contain multiple N6-methyladenosine (m6A) residues. m6A is bound by the YTHDF proteins, creating mRNA-protein complexes that partition into stress granules in mammalian cells. Here we show that length-dependent enrichment of mRNAs in stress granules is mediated by m6A. Long mRNAs often contain one or more long exons, which are preferential sites of m6A formation. In mammalian cells lacking m6A, long mRNAs no longer show preferential stress granule enrichment. Furthermore, we show that m6A abundance more strongly predicts which short or long mRNAs are enriched in stress granules, rather than length alone. Thus, mRNA length correlates with mRNA enrichment in stress granules owing to the high prevalence of m6A in long mRNAs.


Asunto(s)
Mamíferos , Gránulos de Estrés , Animales , ARN Mensajero/metabolismo , Mamíferos/genética
10.
Nat Protoc ; 18(9): 2671-2698, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567932

RESUMEN

Chemical modifications of transcripts with a 5' cap occur in all organisms and function in many aspects of RNA metabolism. To facilitate analysis of RNA caps, we developed a systems-level mass spectrometry-based technique, CapQuant, for accurate and sensitive quantification of the cap epitranscriptome. The protocol includes the addition of stable isotope-labeled cap nucleotides (CNs) to RNA, enzymatic hydrolysis of endogenous RNA to release CNs, and off-line enrichment of CNs by ion-pairing high-pressure liquid chromatography, followed by a 17 min chromatography-coupled tandem quadrupole mass spectrometry run for the identification and quantification of individual CNs. The total time required for the protocol can be up to 7 d. In this approach, 26 CNs can be quantified in eukaryotic poly(A)-tailed RNA, bacterial total RNA and viral RNA. This protocol can be modified to analyze other types of RNA and RNA from in vitro sources. CapQuant stands out from other methods in terms of superior specificity, sensitivity and accuracy, and it is not limited to individual caps nor does it require radiolabeling. Thanks to its unique capability of accurately and sensitively quantifying RNA caps on a systems level, CapQuant can reveal both the RNA cap landscape and the transcription start site distribution of capped RNA in a broad range of settings.


Asunto(s)
Caperuzas de ARN , Espectrometría de Masas en Tándem , Caperuzas de ARN/genética , ARN Mensajero/genética , Cromatografía Líquida de Alta Presión , ARN Viral/genética , ARN Bacteriano
11.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503010

RESUMEN

A major problem with mRNA therapeutics is the limited duration of protein expression due to the short half-life of mRNA. New approaches for generating highly stable circular mRNA in vitro have allowed increased duration of protein expression. However, it remains difficult to genetically encode circular mRNAs in mammalian cells, which limits the use of circular mRNA in cell-derived therapeutics. Here we describe the adaptation of the Tornado (Twister-optimized RNA for durable overexpression) system to achieve in-cell synthesis of circular mRNAs. We identify the promoter and internal ribosomal entry site (IRES) that result in high levels of protein expression in cells. We then show that these circular mRNAs can be packaged into virus-like particles (VLPs) thus enabling prolonged protein expression. Overall, these data describe a platform for synthesis of circular mRNAs and how these circular mRNAs can markedly enhance the ability of VLPs to function as a mRNA delivery tool.

12.
Nature ; 618(7967): 1078-1084, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344591

RESUMEN

Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.


Asunto(s)
ADN , Proteínas Fluorescentes Verdes , Imitación Molecular , Conformación de Ácido Nucleico , ADN/química , ADN/ultraestructura , G-Cuádruplex , ARN/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/ultraestructura , Cristalografía por Rayos X , Microscopía por Crioelectrón , Enlace de Hidrógeno , Cationes Bivalentes/química , Cationes Monovalentes/química
13.
Nat Commun ; 14(1): 2969, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221204

RESUMEN

Beetroot is a homodimeric in vitro selected RNA that binds and activates DFAME, a conditional fluorophore derived from GFP. It is 70% sequence-identical to the previously characterized homodimeric aptamer Corn, which binds one molecule of its cognate fluorophore DFHO at its interprotomer interface. We have now determined the Beetroot-DFAME co-crystal structure at 1.95 Å resolution, discovering that this RNA homodimer binds two molecules of the fluorophore, at sites separated by ~30 Å. In addition to this overall architectural difference, the local structures of the non-canonical, complex quadruplex cores of Beetroot and Corn are distinctly different, underscoring how subtle RNA sequence differences can give rise to unexpected structural divergence. Through structure-guided engineering, we generated a variant that has a 12-fold fluorescence activation selectivity switch toward DFHO. Beetroot and this variant form heterodimers and constitute the starting point for engineered tags whose through-space inter-fluorophore interaction could be used to monitor RNA dimerization.


Asunto(s)
Ingeniería , Colorantes Fluorescentes , Dimerización , Fluorescencia , Ionóforos , Oligonucleótidos , ARN , Verduras , Zea mays
14.
RNA Biol ; 20(1): 198-206, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129556

RESUMEN

RNA aptamers are structured RNAs that can bind to diverse ligands, including proteins, metabolites, and other small molecules. RNA aptamers are widely used as in vitro affinity reagents. However, RNA aptamers have not been highly successful as bioactive intracellular molecules that can bind target molecules and influence cellular processes. We describe how poor RNA aptamer expression and especially poor RNA aptamer folding have limited the use of RNA aptamers in RNA synthetic biology applications. We discuss innovative new approaches that promote RNA aptamer folding in living cells and how these approaches have improved the function of aptamers in mammalian cells. These new approaches are making RNA aptamer-based synthetic biology and RNA aptamer therapeutic applications much more achievable.


Asunto(s)
Aptámeros de Nucleótidos , Animales , Aptámeros de Nucleótidos/genética , Biología Sintética , Técnica SELEX de Producción de Aptámeros , Ligandos , Mamíferos
15.
Nature ; 614(7947): 358-366, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725932

RESUMEN

The mRNA cap structure is a major site of dynamic mRNA methylation. mRNA caps exist in either the Cap1 or Cap2 form, depending on the presence of 2'-O-methylation on the first transcribed nucleotide or both the first and second transcribed nucleotides, respectively1,2. However, the identity of Cap2-containing mRNAs and the function of Cap2 are unclear. Here we describe CLAM-Cap-seq, a method for transcriptome-wide mapping and quantification of Cap2. We find that unlike other epitranscriptomic modifications, Cap2 can occur on all mRNAs. Cap2 is formed through a slow continuous conversion of mRNAs from Cap1 to Cap2 as mRNAs age in the cytosol. As a result, Cap2 is enriched on long-lived mRNAs. Large increases in the abundance of Cap1 leads to activation of RIG-I, especially in conditions in which expression of RIG-I is increased. The methylation of Cap1 to Cap2 markedly reduces the ability of RNAs to bind to and activate RIG-I. The slow methylation rate of Cap2 allows Cap2 to accumulate on host mRNAs, yet ensures that low levels of Cap2 occur on newly expressed viral RNAs. Overall, these results reveal an immunostimulatory role for Cap1, and that Cap2 functions to reduce activation of the innate immune response.


Asunto(s)
Senescencia Celular , Epigenoma , Mamíferos , Metilación , Caperuzas de ARN , ARN Mensajero , Animales , Citosol/metabolismo , Proteína 58 DEAD Box , Perfilación de la Expresión Génica , Inmunidad Innata , Mamíferos/genética , Mamíferos/metabolismo , Nucleótidos/química , Nucleótidos/genética , Nucleótidos/metabolismo , Receptores Inmunológicos , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/genética , Análogos de Caperuza de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma , Factores de Tiempo
17.
Science ; 379(6629): eabj7412, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656933

RESUMEN

Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.


Asunto(s)
Linfocitos B , Transformación Celular Neoplásica , Linfoma de Células B Grandes Difuso , Proteínas de Neoplasias , Animales , Humanos , Ratones , Afinidad de Anticuerpos/genética , Linfocitos B/patología , Centro Germinal , Mutación , Proteínas de Neoplasias/genética , Linfoma de Células B Grandes Difuso/genética , Transformación Celular Neoplásica/genética , Selección Genética
18.
Methods Mol Biol ; 2570: 223-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36156786

RESUMEN

RNA aptamers can be genetically encoded in cells to probe and manipulate cellular function. The usefulness of aptamers in mammalian cells is limited by low accumulation and degradation by ribonucleases. Expression of circular RNA aptamers using the Tornado expression system achieves high stability and an abundance of intracellular RNA aptamers. With this method, RNA aptamers with otherwise minimal activity become potent inhibitors. Here, we describe protocols to characterize circular RNA aptamers expressed using Tornado. Included are methods to assess stability, abundance, subcellular localization, and target binding by circular RNA aptamers.


Asunto(s)
Aptámeros de Nucleótidos , Animales , Aptámeros de Nucleótidos/química , Mamíferos/genética , ARN/química , ARN Circular , Ribonucleasas/metabolismo
19.
PLoS Biol ; 20(11): e3001853, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36395107

RESUMEN

The accurate construction of neural circuits requires the precise control of axon growth and guidance, which is regulated by multiple growth and guidance cues during early nervous system development. It is generally thought that the growth and guidance cues that control the major steps of axon development have been defined. Here, we describe cerebellin-1 (Cbln1) as a novel cue that controls diverse aspects of axon growth and guidance throughout the central nervous system (CNS) by experiments using mouse and chick embryos. Cbln1 has previously been shown to function in late neural development to influence synapse organization. Here, we find that Cbln1 has an essential role in early neural development. Cbln1 is expressed on the axons and growth cones of developing commissural neurons and functions in an autocrine manner to promote axon growth. Cbln1 is also expressed in intermediate target tissues and functions as an attractive guidance cue. We find that these functions of Cbln1 are mediated by neurexin-2 (Nrxn2), which functions as the Cbln1 receptor for axon growth and guidance. In addition to the developing spinal cord, we further show that Cbln1 functions in diverse parts of the CNS with major roles in cerebellar parallel fiber growth and retinal ganglion cell axon guidance. Despite the prevailing role of Cbln1 as a synaptic organizer, our study discovers a new and unexpected function for Cbln1 as a general axon growth and guidance cue throughout the nervous system.


Asunto(s)
Axones , Cerebelo , Embrión de Pollo , Animales , Ratones , Axones/metabolismo , Cerebelo/metabolismo , Médula Espinal/metabolismo , Neuronas/metabolismo , Proteínas del Tejido Nervioso/genética , Precursores de Proteínas/metabolismo
20.
ACS Pharmacol Transl Sci ; 5(10): 872-891, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36268123

RESUMEN

YTHDF proteins bind the N 6-methyladenosine (m6A)-modified mRNAs, influencing their processing, stability, and translation. Therefore, the members of this protein family play crucial roles in gene regulation and several physiological and pathophysiological conditions. YTHDF proteins contain a hydrophobic pocket that accommodates the m6A embedded in the RRACH consensus sequence on mRNAs. We exploited the presence of this cage to set up an m6A-competitive assay and performed a high-throughput screen aimed at identifying ligands binding in the m6A pocket. We report the organoselenium compound ebselen as the first-in-class inhibitor of the YTHDF m6A-binding domain. Ebselen, whose interaction with YTHDF proteins was validated via orthogonal assays, cannot discriminate between the binding domains of the three YTHDF paralogs but can disrupt the interaction of the YTHDF m6A domain with the m6A-decorated mRNA targets. X-ray, mass spectrometry, and NMR studies indicate that in YTHDF1 ebselen binds close to the m6A cage, covalently to the Cys412 cysteine, or interacts reversibly depending on the reducing environment. We also showed that ebselen engages YTHDF proteins within cells, interfering with their mRNA binding. Finally, we produced a series of ebselen structural analogs that can interact with the YTHDF m6A domain, proving that ebselen expansion is amenable for developing new inhibitors. Our work demonstrates the feasibility of drugging the YTH domain in YTHDF proteins and opens new avenues for the development of disruptors of m6A recognition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA