Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Br J Haematol ; 202(3): 674-685, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246471

RESUMEN

Congenital erythrocytoses represent a heterogenous group of rare defects of erythropoiesis characterized by elevated erythrocyte mass. We performed molecular-genetic analysis of 21 Czech patients with congenital erythrocytosis and assessed the mutual link between chronic erythrocyte overproduction and iron homoeostasis. Causative mutations in erythropoietin receptor (EPOR), hypoxia-inducible factor 2 alpha (HIF2A) or Von Hippel-Lindau (VHL) genes were detected in nine patients, including a novel p.A421Cfs*4 EPOR and a homozygous intronic c.340+770T>C VHL mutation. The association and possible cooperation of five identified missense germline EPOR or Janus kinase 2 (JAK2) variants with other genetic/non-genetic factors in erythrocytosis manifestation may involve variants of Piezo-type mechanosensitive ion channel component 1 (PIEZO1) or Ten-eleven translocation 2 (TET2), but this requires further research. In two families, hepcidin levels appeared to prevent or promote phenotypic expression of the disease. No major contribution of heterozygous haemochromatosis gene (HFE) mutations to the erythrocytic phenotype or hepcidin levels was observed in our cohort. VHL- and HIF2A-mutant erythrocytosis showed increased erythroferrone and suppressed hepcidin, whereas no overproduction of erythroferrone was detected in other patients regardless of molecular defect, age or therapy. Understanding the interplay between iron metabolism and erythropoiesis in different subgroups of congenital erythrocytosis may improve current treatment options.


Asunto(s)
Policitemia , Humanos , Policitemia/genética , Hepcidinas/genética , Oxígeno/metabolismo , Mutación , Receptores de Eritropoyetina/genética , Canales Iónicos/genética
2.
Am J Hematol ; 97(10): 1286-1299, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35815815

RESUMEN

Iron availability for erythropoiesis is controlled by the iron-regulatory hormone hepcidin. Increased erythropoiesis negatively regulates hepcidin synthesis by erythroferrone (ERFE), a hormone produced by erythroid precursors in response to erythropoietin (EPO). The mechanisms coordinating erythropoietic activity with iron homeostasis in erythrocytosis with low EPO are not well defined as exemplified by dominantly inherited (heterozygous) gain-of-function mutation of human EPO receptor (mtHEPOR) with low EPO characterized by postnatal erythrocytosis. We previously created a mouse model of this mtHEPOR that develops fetal erythrocytosis with a transient perinatal amelioration of erythrocytosis and its reappearance at 3-6 weeks of age. Prenatally and perinatally, mtHEPOR heterozygous and homozygous mice (differing in erythrocytosis severity) had increased Erfe transcripts, reduced hepcidin, and iron deficiency. Epo was transiently normal in the prenatal life; then decreased at postnatal day 7, and remained reduced in adulthood. Postnatally, hepcidin increased in mtHEPOR heterozygotes and homozygotes, accompanied by low Erfe induction and iron accumulation. With aging, the old, especially mtHEPOR homozygotes had a decline of erythropoiesis, myeloid expansion, and local bone marrow inflammatory stress. In addition, mtHEPOR erythrocytes had a reduced lifespan. This, together with reduced iron demand for erythropoiesis, due to its age-related attenuation, likely contributes to increased iron deposition in the aged mtHEPOR mice. In conclusion, the erythroid drive-mediated inhibition of hepcidin production in mtHEPOR mice in the prenatal/perinatal period is postnatally abrogated by increasing iron stores promoting hepcidin synthesis. The differences observed in studied characteristics between mtHEPOR heterozygotes and homozygotes suggest dose-dependent alterations of downstream EPOR stimulation.


Asunto(s)
Eritropoyetina , Policitemia , Adulto , Anciano , Animales , Eritropoyesis/genética , Eritropoyetina/genética , Eritropoyetina/farmacología , Mutación con Ganancia de Función , Hepcidinas/genética , Hepcidinas/metabolismo , Hormonas , Humanos , Hierro/metabolismo , Ratones , Policitemia/genética , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo
3.
Blood Cells Mol Dis ; 97: 102690, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35871033

RESUMEN

Diamond-Blackfan anemia (DBA) is predominantly underlined by mutations in genes encoding ribosomal proteins (RP); however, its etiology remains unexplained in approximately 25 % of patients. We previously reported a novel heterozygous RPS7 mutation hg38 chr2:g.3,580,153G > T p.V134F in one female patient and two asymptomatic family members, in whom mild anemia and increased erythrocyte adenosine deaminase (eADA) activity were detected. We observed that altered erythrocyte metabolism and oxidative stress which may negatively affect the lifespan of erythrocytes distinguishes the patient from her asymptomatic family members. Pathogenicity of the RPS7 p.V134F mutation was extensively validated including molecular defects in protein translational activity and ribosomal stress activation in the cellular model of this variant.


Asunto(s)
Anemia de Diamond-Blackfan , Proteínas Ribosómicas , Anemia de Diamond-Blackfan/genética , Eritrocitos/metabolismo , Femenino , Humanos , Mutación Missense , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348919

RESUMEN

Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients' samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan/patología , Daño del ADN , Eritrocitos/patología , Mediadores de Inflamación/metabolismo , Inflamación/patología , Estrés Oxidativo , Adulto , Anemia de Diamond-Blackfan/inmunología , Anemia de Diamond-Blackfan/metabolismo , Animales , Estudios de Casos y Controles , Niño , Eritrocitos/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA