Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Food Chem ; 447: 139032, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38513489

RESUMEN

This study aimed to characterize Echinus esculentus gonads in terms of biometric parameters and nutritional quality at two sites in Mid-Norway at four different seasons. The chemical contamination of the gonads was also investigated for the first time through the evaluation of 28 macro- and trace elements and 32 components from the emerging and persistent group per- and polyfluoroalkyl substances (PFAS). The spawning period was determined in summer, given that the gonad index was the lowest in this season for both sites. Protein concentrations were constant (8%-10%). However, lipid contents (1%-3%) were noticed to be higher in gonads during autumn and winter. The gonads had high contents of PUFA mainly EPA and DHA, followed by SFA, and MUFA year around for both locations. E. esculentus gonads constitute a good source of fatty acids, macro, and trace elements. This species could also be a bioindicator for the monitoring of marine environments.


Asunto(s)
Oligoelementos , Animales , Estaciones del Año , Oligoelementos/análisis , Erizos de Mar/metabolismo , Gónadas/química , Noruega , Valor Nutritivo
2.
Int J Food Microbiol ; 410: 110485, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37984214

RESUMEN

This study aimed to explore the diversity of fifty-four Photobacterium strains isolated from muscle tissue of European plaice (Pleuronectes platessa) caught at different fishing seasons and stored 14-days under various conditions. Single phylogenetic markers (16S rRNA, gapA, gyrB and recA) and multilocus sequence analysis (MLSA) were employed to classify isolates at species level. Furthermore, intra- and interspecies variability in the phenotypic traits, maximum specific growth rate (µmax) and spoilage potential of the Photobacterium isolates were investigated. The isolates were classified into the P. iliopiscarium (53.7 %), P. phosphoreum (40.7 %) and P. piscicola (5.6 %) clades using MLSA. Two housekeeping genes, gyrB and recA, exhibited a consistent phylogenetic relationship with MLSA, suggesting that they might be used as individual phylogenetic markers for the Photobacterium genus. Intra- and interspecies variability in the expression of phenotypic characteristics and the production of trimethylamine (TMA), inosine (HxR), and hypoxanthine (Hx) were observed. A growth optimum temperature for P. iliopiscarium was approximately 20 °C, while those for P. phosphoreum and P. piscicola were closer to 15 °C. All isolates exhibited the highest growth density at 1.5 % NaCl, followed by 0.5 %, 3 %, and 6 % NaCl. However, P. phosphoreum demonstrated a higher NaCl tolerance than the other two species. Although, the high CO2 atmosphere significantly inhibited the growth of all strains at 4 °C, P. phosphoreum and P. piscicola showed higher growth density at 15 °C than P. iliopiscarium. Notably, all strains demonstrated H2S production. The µmax varied considerably within each species, highlighting the significance of strain-level variability. This study demonstrates that P. iliopiscarium and P. piscicola, alongside P. phosphoreum, are efficient TMA-, HxR-, Hx-, and H2S-producers, suggesting their potential contribution to synergistic off-odour generation and spoilage. Moreover, the Photobacterium isolates seem to exhibit diverse adaptations to their environments, resulting in fluctuated growth and spoilage potential. Understanding intra- and interspecies variability will facilitate modelling seafood spoilage in microbial risk assessments and developing targeted hurdles to prolong products' shelf-life.


Asunto(s)
Lenguado , Animales , Filogenia , Lenguado/genética , Photobacterium , ARN Ribosómico 16S/genética , Cloruro de Sodio , Alimentos Marinos
3.
Heliyon ; 9(9): e19887, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810133

RESUMEN

Biopreservation using lactic acid bacteria (LAB) is a promising technology to prevent the growth of pathogenic microorganisms in fresh and mildly processed food. The main aim of this study was to select LAB, originally isolated from ready-to-eat (RTE) seafood, for biopreservation of fresh salmon and processed salmon products. Ten LAB strains (five Carnobacterium and five Leuconostoc) were selected based on previously demonstrated bioprotective properties to investigate their antimicrobial mechanisms and temperature-dependent growth kinetics in a sterile salmon juice model system. Furthermore, five strains (three Carnobacterium and two Leuconostoc) were selected to test process-dependent growth kinetic parameters relevant to the secondary processing of salmon. Two strains (Carnobacterium maltaromaticum 35 and C. divergens 468) showed bacteriocin-like activity against Listeria innocua, while inhibitory effect of cell-free supernatants (CFS) was not observed against Escherichia coli. All selected strains were able to grow in sterile salmon juice at tested temperatures (4, 8, 12 and 16 °C), with specific growth rates (µ) ranging from 0.01 to 0.04/h at 4 °C and reaching a maximum population density of 8.4-9 log CFU/ml. All five strains tested for process-dependent growth kinetic parameters were able to grow in the range of 0.5-5% NaCl and 0.13-0.26% purified condensed smoke (VTABB and JJT01), with inter- and intraspecies variation in growth kinetics. According to the temperature-dependent growth kinetics and antimicrobial assay results, two strains, Leuconostoc mesenteroides 68 (Le.m.68) and C. divergens 468 (C d.468), were selected for in situ test to validate their ability to grow in vacuum-packed fresh salmon at 4 °C. Both strains were able to grow at maximum growth rates of 0.29 ± 0.04/d for Le. m.68 and 0.39 ± 0.06/d for C.d.468, and their final concentrations were 7.91 ± 0.31 and 8.02 ± 0.25 log CFU/g, respectively. This study shows that LAB, originally isolated from RTE seafood, have promising potential as bioprotective strains in fresh and processed salmon products.

4.
Foods ; 12(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37509880

RESUMEN

Soluble gas stabilization (SGS) technology is a novel way to increase the effectiveness of modified atmosphere (MA) packaging. However, SGS can be time-consuming and difficult to include in an existing process. This can be overcome by including CO2 in an existing processing step, such as the product's cooling step. A full factorial design was set up with SGS times (0.5, 1.0, and 2.0 h) and temperatures of fish cakes (chilled (0 °C) or during chilling (starting at 85 °C)) as factors. MA-packaged fish cakes were included as a control. The response was headspace gas composition at equilibrium. Headspace gas composition at equilibrium showed significantly (p < 0.05) less dissolved CO2 in hot fish cakes after 0.5 h than in cold cakes. Still, no significant differences were found between hot and cold at 1.0 and 2.0 h. Also, all SGS samples, regardless of time and temperature, had a higher content of CO2 compared to modified atmosphere packaging (MAP).

5.
Front Microbiol ; 14: 1175304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455746

RESUMEN

Aeromonas are widespread in aquatic environments and are considered emerging pathogens in humans and animals. Multidrug resistant (MDR) Aeromonas circulating in the aquatic environment and food production chain can potentially disseminate antimicrobial resistance (AMR) to humans via the foodborne route. In this study, we aimed to investigate AMR and virulence factors of 22 Aeromonas strains isolated from ready-to-eat (RTE) seafood. A multilocus phylogenetic analysis (MLPA) using the concatenated sequences of six housekeeping genes (gyrB, rpoD, gyrA, recA, dnaJ, and dnaX) in the 22 Aeromonas genomes and average nucleotide identity (ANI) analysis revealed eight different species; A. caviae, A. dhakensis, A. hydrophila, A. media, A. rivipollensis, A. salmonicida, A. bestiarum, and A. piscicola. The presence of virulence genes, AMR genes and mobile genetic elements (MGEs) in the Aeromonas genomes was predicted using different databases. Our data showed that the genes responsible for adherence and motility (Msh type IV pili, tap type IV pili, polar flagella), type II secretion system (T2SS) and hemolysins were present in all strains, while the genes encoding enterotoxins and type VI secretion system (T6SS) including major effectors were highly prevalent. Multiple AMR genes encoding ß-lactamases such as cphA and blaOXA were detected, and the distribution of those genes was species-specific. In addition, the quinolone resistance gene, qnrS2 was found in a IncQ type plasmid of the A. rivopollensis strain A539. Furthermore, we observed the co-localization of a class I integron (intl1) with two AMR genes (sul1 and aadA1), and a Tn521 transposon carrying a mercury operon in A. caviae strain SU4-2. Various MGEs including other transposons and insertion sequence (IS) elements were identified without strongly associating with detected AMR genes or virulence genes. In conclusion, Aeromonas strains in RTE seafood were potentially pathogenic, carrying several virulence-related genes. Aeromonas carrying multiple AMR genes and MGEs could potentially be involved in the dissemination and spread of AMR genes to other bacterial species residing in the same environment and possibly to humans. Considering a One-Health approach, we highlight the significance of monitoring AMR caused by Aeromonas circulating in the food chain.

6.
Int J Food Microbiol ; 397: 110222, 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37099863

RESUMEN

The aim of this study was to investigate seasonal variations (September, December and April) in the initial microbial communities of skin and gills' external mucosal tissues (EMT) and muscle of European plaice (Pleuronectes platessa). Moreover, a potential relationship between EMT and fresh muscle microbiota was examined. The microbial community succession in plaice muscle as a function of fishing season and storage conditions was also investigated. The selected seasons for the storage experiment were September and April. Investigated storage conditions were; fillets packaged in either vacuum or modified atmosphere (70 % CO2, 20 % N2, 10 % O2) and chilled/refrigerated conditions (4 °C). Whole fish stored on ice (0 °C) was selected as a commercial standard. Seasonal variations were detected in the initial microbial communities of EMT and plaice muscle. The highest microbial diversity was found in EMT and muscle of April-caught plaice, followed by December and September catch indicating the important role of environmental factors in shaping the initial EMT and muscle microbial communities. The EMT microbial communities were more diverse than fresh muscle samples. The low number of shared taxa between EMT and initial muscle microbial communities indicates that only a minor part of the muscle microbiota came from the EMT. Psychrobacter and Photobacterium were the predominant genera in the EMT microbial communities in all seasons. Photobacterium dominated the initial muscle microbial communities with a gradual seasonal reduction of its abundance from September to April. Storage time and storage conditions shaped a less diverse and distinct community compared to the fresh muscle. However, no clear separation was seen between the communities at the middle and end of storage time. Regardless of EMT microbiota, fishing season and storage conditions, Photobacterium dominated the microbial communities of stored muscle samples. The Photobacterium prevalence as the primary specific spoilage organism (SSO) could be attributed to its high relative abundance in the initial microbiota of muscle and its CO2-tolerance. The findings of this study indicate the important contribution of Photobacterium to the microbial spoilage of plaice. Thus, the development of innovative preservation techniques addressing the rapid growth of Photobacterium could contribute to the production of high-quality and shelf-stable convenient retail plaice products.


Asunto(s)
Lenguado , Microbiota , Animales , Dióxido de Carbono , Microbiología de Alimentos , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Branquias , Músculos , Photobacterium , Estaciones del Año
7.
Front Nutr ; 10: 1118094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969808

RESUMEN

Exploring and making use of underutilized marine resources can be a sustainable approach to achieve future demands of fish consumption by the ever-growing population. Five species, namely European plaice (Pleuronectes platessa), European flounder (Platichthys flesus), lemon sole (Microstomus kitt), megrim (Lepidorhombus whiffiagonis), and thornback ray (Raja clavate), often captured as by-catch in Norway, were characterized for their nutritional value and potential accumulation of hazardous components. The proximate composition, protein profile, fatty acid profile as well as essential and toxic trace elements and polychlorinated biphenyls (PCBs) were analyzed. Digestible indispensable amino acid (DIAA) ratios and scores (DIAAS) and contributions of omega-3 fatty acids to the diet were calculated. Analysis on proximate composition revealed low fat contents of 0.74 to 1.25% and sufficient protein contents between 16.9 and 24% in the five species. Results of DIAA indicate a profitable distribution, with contributions exceeding the daily intake recommendations for an adult person related to a 200 g fillet. Moreover, findings on the distribution of eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) showed remarkable results, considering that the investigated species are lean fish. All five investigated fish exceed the recommended average daily intake level (AI) of EPA + DHA in a 200 g portion. As to toxic trace elements and PCBs, no significantly elevated levels were found considering a portion size of 200 g. Consequently, the nutritional quality of the investigated fish can be regarded as profitable with overall low potential health risks.

8.
Int J Food Microbiol ; 384: 109985, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36306545

RESUMEN

Aeromonas are ubiquitous aquatic bacteria and frequently isolated from seafood. There is growing awareness of Aeromonas as foodborne pathogens, particularly in connection with consumption of ready-to-eat (RTE) seafood. The aim of this study was to investigate the effect of food processing factors on the growth kinetics of eight Aeromonas strains (representing seven species) isolated from RTE seafood. The effect of low temperature (4 and 8 °C) in combination with different NaCl concentrations (0.5-6.5 %) or with two purified condensate smokes (PCSs; Red Arrow SmokEz VTABB and JJT01) at different concentrations (0-0.26 %) was studied in Trypton Soy Broth (TSB). In food processing, application of PCS is considered healthier than traditional smoking. Growth kinetics parameters of each strain were estimated by using a primary predictive model. Our result showed that the addition of 3.5 % NaCl at refrigeration temperature (4 °C) was not sufficient to inhibit the growth of A. media, A. bestiarum, A. piscicola, and A. salmonicida, while higher NaCl concentration (≥5.0 %) at 8 °C suppressed their growth. On the other hand, our result demonstrated the antimicrobial potential of using PCS at maximal allowed concentration (0.26 %) against Aeromonas. PCS concentration and phenol content were important factors influencing the growth kinetics parameters of Aeromonas. Moreover, the growth kinetics of three Aeromonas strains were further studied in commercially produced vacuum-packed fresh and cold-smoked salmon stored at 4 °C for 14 and 21 days, respectively. Our results demonstrate that vacuum packing combined with cold storage at 4 °C was insufficient to inhibit the growth of Aeromonas in fresh salmon, while the growth was inhibited in a minimally salted cold-smoked salmon (salt content of 1.8 %). Our study implies that mild food processing factors applied in the production of RTE seafood might not guarantee the total inhibition of Aeromonas. Even though further studies on evaluating the antimicrobial potential of PCSs in actual seafood matrixes are necessary, the present study suggests that PCS technology might be a promising approach to prevent the potential growth of Aeromonas.


Asunto(s)
Aeromonas , Listeria monocytogenes , Conservación de Alimentos/métodos , Embalaje de Alimentos/métodos , Cloruro de Sodio/farmacología , Recuento de Colonia Microbiana , Manipulación de Alimentos/métodos , Alimentos Marinos/microbiología , Microbiología de Alimentos
9.
Food Chem ; 401: 134155, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099825

RESUMEN

The seasonal effect on chemical composition and contaminants in European plaice (Pleuronectes platessa) captured in Norwegian waters was investigated in three seasons (September, December, April). Fillets were compared by analysing proximate composition, lipid and protein profile, including fatty acids, lipid class distribution, free and total amino acids. Trace elements and polychlorinated biphenyls (PCB) were determined to assess the potential health risk of consumption. Results on proximate composition reveal differences in water, ash, lipid, and protein content between the seasons. Beneficial levels of n3 fatty acids, including a sufficient n3/n6 ratio (6.1-8.7), were observed. Phospholipids and cholesterol were negatively correlated with total lipid content, adding to high triacylglycerol concentrations observed in December samples. No elevated levels for toxic trace elements, yet detrimental concentrations of dioxin-like PCB-118 were found. Results show that European plaice is highly nutritious with desirable amino and fatty acid profile throughout the year, and with few potential risks.


Asunto(s)
Dioxinas , Lenguado , Bifenilos Policlorados , Oligoelementos , Animales , Estaciones del Año , Bifenilos Policlorados/análisis , Peces/metabolismo , Oligoelementos/análisis , Proteínas/metabolismo , Aminoácidos/análisis , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Agua/metabolismo , Lípidos
10.
Foods ; 11(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36140885

RESUMEN

Aeromonas spp. are ubiquitous aquatic bacteria, frequently isolated from seafood. The growth and spoilage potential of an inoculated strain of Aeromonas salmonicida (SU2) in Atlantic cod (Gadus morhua) fillets were assessed as a function of various modified atmospheres (MA) (CO2 (67%) with O2 (33%) or N2 (33%), and vacuum packaging (VP)) under refrigerated storage (4 °C) for 13 days. Additionally, the general microbiological quality was assessed by quantifying total aerobic psychrotrophic count (PC), total aerobic plate count (APC), and H2S-producing bacteria. A selection of spoilage metabolites was quantified by nuclear magnetic resonance (NMR) spectroscopy. The MA containing CO2/O2 and CO2/N2 significantly inhibited the growth of the inoculated strain throughout storage (p < 0.001), whereas VP allowed for a 3-log increase of Aeromonas in 13 days. No significant effect of the inoculation with A. salmonicida on spoilage metabolite production was detected. Applying O2 instead of N2 in the CO2-enriched atmosphere resulted in a significantly lower PC for 10 days, and H2S-producing bacteria were inhibited in both MAs compared to vacuum. This study provides data that can be used as a basis to further elucidate the role of bacteria belonging to the genus Aeromonas as potential spoilage organisms in marine fish species.

11.
J Food Sci ; 87(6): 2377-2390, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35546451

RESUMEN

The demand for high-quality, convenient, and sustainable salmon products represents a potential for value-added product development and novel packaging solutions. Soluble gas stabilization (SGS) technology, which applies dissolved CO2 in the product before packaging, represents a novel approach to retain product quality and prevent microbiological deterioration during cold storage of pre-rigor filleted salmon loins. The present study aimed to examine the solubility of CO2 in salmon loins as affected by rigor status. In addition, the effect of predissolved CO2 on the overall quality of pre-rigor vacuum-packed Atlantic salmon (Salmo salar L.) was investigated during storage at 4°C. The CO2 pretreatment was conducted, exposing loins to 100% CO2 for 18 h at 4°C (the control group was kept in air at 4°C) before repackaging and storage for 15 days. Dissolved CO2 in the muscle (equilibrium achieved four days post packaging) was slightly higher in pre-rigor than post-rigor salmon loins (pequilibrium  = 0.006). Moreover, the overall spoilage (Hvalue) and microbiological stability of salmon fillets stored in SGS-vacuum were significantly improved compared to vacuum-packed loins (p < 0.05). The results demonstrate that SGS technology can maintain the overall quality of pre-rigor vacuum-packed salmon loins without introducing the high gas-to-product volume ratio recognized by modified atmosphere packaging. Thus, the application of SGS technology on pre-rigor loins can lead to higher economic gain and environmental benefits due to the reduced amount of required packaging material and reduced food waste. PRACTICAL APPLICATION: CO2 can be dissolved in pre-rigor salmon loins before vacuum packaging to increase product shelf life during cold storage.


Asunto(s)
Eliminación de Residuos , Salmo salar , Animales , Dióxido de Carbono , Microbiología de Alimentos , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Alimentos Marinos/microbiología , Tecnología , Vacio
12.
Compr Rev Food Sci Food Saf ; 21(1): 198-226, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907649

RESUMEN

The global food processing industries represent a challenge and a risk to the environment due to the poor handling of residues, which are often discarded as waste without being used in further sidestreams. Although some part of this biomass is utilized, large quantities are, however, still under- or unutilized despite these byproducts being a rich resource of valuable compounds. These biowastes contain biopolymers and other compounds such as proteins, polysaccharides, lipids, pigments, micronutrients, and minerals with good nutritional values and active biological properties with applications in various fields including the development of sustainable food packaging. This review offers an update on the recent advancement of food byproducts recycling and upgrading toward the production of food packaging materials, which could be edible, (bio)degradable, and act as carriers of biobased active agents such as antimicrobials, antioxidants, flavoring additives, and health-promoting compounds. This should be a global initiative to promote the well-being of humans and achieve sustainability while respecting the ecological boundaries of our planet. Edible films and coatings formulations based on biopolymers and active compounds extracted from biowastes offer great opportunities to decrease the devastating overuse of plastic-based packaging. It has become evident that a transition from a fuel-based to a circular bio-based economy is potentially beneficial. Therefore, the exploitation of food discards within the context of a zero-waste biorefinery approach would improve waste management by minimizing its generation, reduce pollution, and provide value-added compounds. Most importantly, the development of edible packaging materials from food byproducts does not compete with food resources, and it also helps decrease our dependency on petroleum-based products. Practical Application Almost 99% of current plastics are petroleum-based, and their continuous use has been devastating to the planet as plastic-derived components have been detected in all trophic levels. Besides, the increasing amounts of food by-products are a socioeconomic and environmental challenge, and halving food loss and waste and turning it into valuable products has become necessary to achieve sustainability and economic circularity. The development of new packaging systems such as edible materials could be one of the solutions to limit the use of persistent plastics. Edible films and coatings by-products-based could also enhance food packaging performance due to their compounds' bioactivities.


Asunto(s)
Películas Comestibles , Petróleo , Biopolímeros , Manipulación de Alimentos , Humanos , Plásticos
13.
Compr Rev Food Sci Food Saf ; 21(1): 477-498, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34873820

RESUMEN

With global seafood production increasing to feed the rising population, there is a need to produce fish and fishery products of high quality and freshness. Water holding properties, including drip loss (DL) and water holding capacity (WHC), are important parameters in determining fish quality as they affect functional properties of muscles such as juiciness and texture. This review focuses on the water holding properties of Atlantic salmon and evaluates the methods used to measure them. The pre- and postmortem factors and how processing and preservation methods influence water holding properties and their correlations to other quality parameters are reviewed. In addition, the possibility of using modelling is explained. Several methods are available to measure WHC. The most prevalent method is the centrifugation method, but other non-invasive and cost-effective approaches are increasingly preferred. The advantages and disadvantages of these methods and future trends are evaluated. Due to the diversity of methods, results from previous research are relative and cannot be directly compared unless the same method is used with the same conditions.


Asunto(s)
Salmo salar , Agua , Animales , Músculos
14.
Foods ; 10(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572838

RESUMEN

Biopreservation is a food preservation technology using microorganisms and/or their inherent antimicrobial metabolites to inhibit undesirable microorganisms. The aim of the present study was to explore the diversity and antimicrobial activity of lactic acid bacteria (LAB) strains (n = 99) isolated from ready-to-eat (RTE) seafood (cold-smoked salmon (CSS), gravlax, and sushi) towards two strains of Listeria monocytogenes (CCUG 15527, F11), Listeria innocua (CCUG 15531) and Escherichia coli (CCUG 38079). The LAB strains were assigned to five different genera (Carnobacterium spp., Lactobacillus spp., Leuconostoc spp., Weissella spp., and Enterococcus sp.) by sequencing a 1150 bp stretch of the 16S rRNA gene. A significant association between the seafood source and the distribution of LAB genera was found (p < 0.001), of which Leuconostoc spp. were most prevalent in sushi and Carnobacterium sp. and Lactobacillus sp. were most frequently isolated from CSS and gravlax. Antimicrobial activity among the LAB was significantly affected by LAB genera (F= 117.91, p < 0.001, one-way ANOVA), product of origin (F = 3.47, p < 0.05), and target (F = 4.64, p = 0.003). LAB isolated from sushi demonstrated a significantly higher antimicrobial effect than LAB from CSS and gravlax (p < 0.05). In general, a significantly higher antimicrobial activity was found towards Listeria spp. than E. coli (p < 0.05). However, Leuconostoc spp. demonstrated similar antimicrobial effects towards E. coli and Listeria spp., except for L. monocytogenes F11 being more sensitive (p < 0.05). This study suggested that seafood-derived LAB strains could be selected for technological application in RTE seafood systems.

15.
Sci Rep ; 10(1): 17160, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051493

RESUMEN

Water and salt uptake, and water holding capacity (WHC) of whole gutted Atlantic salmon superchilled at sub-zero temperatures in refrigerated seawater (RSW) were compared to traditional ice storage. Following the entire value chain, the whole salmon was further processed, and fillets were either chilled on ice or dry salted and cold-smoked. Changes in quality parameters including colour, texture, enzyme activity and microbial counts were also analyzed for 3 weeks. Our results showed that when fish were removed from the RSW tank after 4 days and further chilled for 3 days, an overall weight gain of 0.7%, salt uptake of 0.3% and higher WHC were observed. In contrast, ice-stored fish had a total weight loss of 1% and steady salt uptake of 0.1%. After filleting, raw fillets from whole fish initially immersed in RSW had better gaping occurrence, softer texture, lower cathepsin B + L activity but higher microbiological growth. Otherwise, there were no differences in drip loss nor colour (L*a*b*) on both raw and smoked fillets from RSW and iced fish. Storage duration significantly affected quality parameters including drip loss, colour, texture, enzyme activity and microbial counts in raw fillets and drip loss, WHC, redness and yellowness in smoked fillets.


Asunto(s)
Manipulación de Alimentos/métodos , Conservación de Alimentos/métodos , Salmo salar/fisiología , Alimentos Marinos/análisis , Agua de Mar/química , Animales , Frío , Color , Concentración de Iones de Hidrógeno , Hielo , Humo , Temperatura , Agua/química
16.
J Food Sci ; 83(12): 3099-3109, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30440091

RESUMEN

A comparative evaluation on the effect of carbon dioxide (CO2 ) on quality and shelf life of Atlantic salmon loins pasteurized with microwave and conventional technology was conducted. The experimental design allowed CO2 to enter the salmon muscle before (soluble gas stabilization [SGS] + vacuum) or after pasteurization (CO2 emitter + vacuum), whereas the control samples (vacuum only) were not presented for CO2 . This setup resulted in six different groups; three heated with microwaves and three with conventional pasteurization. The core temperature of microwave samples was 58.8 ± 2.2 °C, whereas the surface temperature was equal to the oven temperature (62 °C) during conventional pasteurization and close to the core temperature during microwave pasteurization (57.6 ± 1.4 °C). Microwave-heated samples showed higher microbial growth; decreased shelf life; and darker (lower L* -value), more reddish (higher a* -value), and yellowish (higher b* -value) colors compared to conventional-heated salmon. Lowest liquid loss (LL) was observed in salmon packaged with the CO2 emitter, whereas a SGS step prior to pasteurization did not affect the LL negatively as compared to samples packaged in vacuum only. Treatment with CO2 , independent of the prestep using SGS or an emitter, resulted in increased shelf life. Protein denaturation, microbial growth, product color, product shelf life, and sensory properties of the salmon loin were significantly affected by the applied pasteurization method (microwave- or conventional pasteurization). However, the heat load was probably too high to detect differences resulting from the pretreatment using SGS or packaging with CO2 emitter. PRACTICAL APPLICATION: Recent developments with increased time pressure from both work and past time activities have led to a tremendous increase in the demand for convenient, tasty ready-to-use food options. Furthermore, contemporary trends for consumption of fresh or lightly processed seafood stress the need to develop processing methods that allow a fulfillment of these demands, while still offering a reasonable shelf life. Carbon dioxide in combination with either microwave or conventional pasteurization is innovative processing technology that can meet consumer's demand of such products.


Asunto(s)
Calidad de los Alimentos , Almacenamiento de Alimentos , Salmo salar , Alimentos Marinos/análisis , Adulto , Animales , Dióxido de Carbono/metabolismo , Color , Comportamiento del Consumidor , Femenino , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Microbiología de Alimentos , Embalaje de Alimentos , Calor , Humanos , Masculino , Microondas , Noruega , Pasteurización , Desnaturalización Proteica , Salmo salar/microbiología , Alimentos Marinos/microbiología , Encuestas y Cuestionarios , Gusto , Vacio , Adulto Joven
17.
J Food Prot ; 78(5): 977-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25951393

RESUMEN

Retail fresh sushi is gaining popularity in Europe. This study was conducted to investigate the microbiological quality of selected samples of fresh sushi with a shelf life of 2 to 3 days offered as complete meals in Norwegian supermarkets. Analysis of aerobic plate counts in 58 sushi samples from three producers revealed large variations in microbiological quality, and 48% of the analyzed sushi boxes were rated as unsatisfactory (> 6.0 log CFU/g). Mesophilic Aeromonas spp. was detected in 71% of the samples. In a follow-up study, we collected products and raw materials directly from the production facility of one producer and observed a significant decrease (P < 0.01) in aerobic plate counts compared with the initial sampling. The observed difference between products purchased in stores compared with those collected directly from the factory suggests that poor temperature control during distribution and display in stores leads to reduced microbiological quality. Microbiological analysis of the sushi ingredients revealed that potentially pathogenic bacteria such as mesophilic Aeromonas spp. or bacteria belonging to the Enterobacteriaceae can be introduced into sushi through both raw vegetables and fish. The results highlight the importance of high quality ingredients and proper temperature control to ensure stable quality and safety of these food products.


Asunto(s)
Productos Pesqueros/microbiología , Contaminación de Alimentos/análisis , Animales , Recuento de Colonia Microbiana , Enterobacteriaceae/aislamiento & purificación , Peces , Estudios de Seguimiento , Manipulación de Alimentos , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Noruega
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA