Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Genes (Basel) ; 15(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254976

RESUMEN

The flavoenzyme N-ribosyldihydronicotinamide (NRH):quinone oxidoreductase 2 (NQO2) catalyzes two-electron reductions of quinones. NQO2 contributes to the metabolism of biogenic and xenobiotic quinones, including a wide range of antitumor drugs, with both toxifying and detoxifying functions. Moreover, NQO2 activity can be inhibited by several compounds, including drugs and phytochemicals such as flavonoids. NQO2 may play important roles that go beyond quinone metabolism and include the regulation of oxidative stress, inflammation, and autophagy, with implications in carcinogenesis and neurodegeneration. NQO2 is a highly polymorphic gene with several allelic variants, including insertions (I), deletions (D) and single-nucleotide (SNP) polymorphisms located mainly in the promoter, but also in other regulatory regions and exons. This is the first systematic review of the literature reporting on NQO2 gene variants as risk factors in degenerative diseases or drug adverse effects. In particular, hypomorphic 29 bp I alleles have been linked to breast and other solid cancer susceptibility as well as to interindividual variability in response to chemotherapy. On the other hand, hypermorphic polymorphisms were associated with Parkinson's and Alzheimer's disease. The I and D promoter variants and other NQO2 polymorphisms may impact cognitive decline, alcoholism and toxicity of several nervous system drugs. Future studies are required to fill several gaps in NQO2 research.


Asunto(s)
Benzoquinonas , Farmacogenética , Quinona Reductasas , Oxidorreductasas , Humanos
2.
J Neural Transm (Vienna) ; 131(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37851107

RESUMEN

Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.


Asunto(s)
Intoxicación por MPTP , Neuroblastoma , Ratones , Humanos , Animales , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Dopamina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
Sci Rep ; 13(1): 21624, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062122

RESUMEN

Dopaminergic degeneration is a central feature of Parkinson's disease (PD), but glial dysfunction may accelerate or trigger neuronal death. In fact, astrocytes play a key role in the maintenance of the blood-brain barrier and detoxification. 6-hydroxydopamine (6OHDA) is used to induce PD in rodent models due to its specific toxicity to dopaminergic neurons, but its effect on astrocytes has been poorly investigated. Here, we show that 6OHDA dose-dependently impairs autophagy in human U373 cells and primary murine astrocytes in the absence of cell death. LC3II downregulation was observed 6 to 48 h after treatment. Interestingly, 6OHDA enhanced NRH:quinone oxidoreductase 2 (NQO2) expression and activity in U373 cells, even if 6OHDA turned out not to be its substrate. Autophagic flux was restored by inhibition of NQO2 with S29434, which correlated with a partial reduction in oxidative stress in response to 6OHDA in human and murine astrocytes. NQO2 inhibition also increased the neuroprotective capability of U373 cells, since S29434 protected dopaminergic SHSY5Y cells from 6OHDA-induced cell death when cocultured with astrocytes. The toxic effects of 6OHDA on autophagy were attenuated by silencing NQO2 in human cells and primary astrocytes from NQO2-/- mice. Finally, the analysis of Gene Expression Omnibus datasets showed elevated NQO2 gene expression in the blood cells of early-stage PD patients. These data support a toxifying function of NQO2 in dopaminergic degeneration via negative regulation of autophagy and neuroprotection in astrocytes, suggesting a potential pharmacological target in PD.


Asunto(s)
Enfermedad de Parkinson , Quinona Reductasas , Humanos , Ratones , Animales , Oxidopamina/farmacología , Neuroprotección , Astrocitos/metabolismo , Enfermedad de Parkinson/genética , Quinona Reductasas/metabolismo , Autofagia , Neuronas Dopaminérgicas/metabolismo
4.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629146

RESUMEN

Evidence exists that the gut microbiota contributes to the alterations of lipid metabolism associated with high-fat diet (HFD). Moreover, the gut microbiota has been found to modulate the metabolism and absorption of dietary lipids, thereby affecting the formation of lipoproteins occurring at the intestinal level as well as systemically, though the pathophysiological implication of altered microbiota composition in HFD and its role in the development of atherosclerotic vascular disease (ATVD) remain to be better clarified. Recently, evidence has been collected indicating that supplementation with natural polyphenols and fibres accounts for an improvement of HFD-associated intestinal dysbiosis, thereby leading to improved lipidaemic profile. This study aimed to investigate the protective effect of a bergamot polyphenolic extract (BPE) containing 48% polyphenols enriched with albedo and pulp-derived micronized fibres (BMF) in the gut microbiota of HFD-induced dyslipidaemia. In particular, rats that received an HFD over a period of four consecutive weeks showed a significant increase in plasma cholesterol, triglycerides and plasma glucose compared to a normal-fat diet (NFD) group. This effect was accompanied by body weight increase and alteration of lipoprotein size and concentration, followed by high levels of MDA, a biomarker of lipid peroxidation. Treatment with a combination of BPE plus BMF (50/50%) resulted in a significant reduction in alterations of the metabolic parameters found in HFD-fed rats, an effect associated with increased size of lipoproteins. Furthermore, the effect of BPE plus BMF treatment on metabolic balance and lipoprotein size re-arrangement was associated with reduced gut-derived lipopolysaccharide (LPS) levels, an effect subsequent to improved gut microbiota as expressed by modulation of the Gram-negative bacteria Proteobacteria, as well as Firmicutes and Bacteroidetes. This study suggests that nutraceutical supplementation of HFD-fed rats with BPE and BMP or with their combination product leads to restored gut microbiota, an effect associated with lipoprotein size re-arrangement and better lipidaemic and metabolic profiles.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Ratas , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta , Lipoproteínas , Extractos Vegetales/farmacología
5.
Mol Cell Endocrinol ; 556: 111721, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35917880

RESUMEN

Bergamot citrus (Citrus bergamia Risso et Poiteau), have been used as a strategy to prevent or treat comorbidities associated with metabolic syndrome parameters, such as cardiorenal metabolic syndrome (CRMS). The aim was to test the effect of bergamot leaf extract on CRMS and associated pathophysiological factors in rats fed with a high sugar-fat diet. Animals were divided into two experimental groups with control diet (Control, n = 30) and high sugar-fat diet (HSF, n = 30) for 20 weeks. Once CRMS was detected, animals were redivided to begin the treatment with Bergamot Leaf Extract (BLE) by gavage (50 mg/kg) for 10 weeks: control diet + placebo (Control, n = 09), control diet + BLE (Control + BLE, n = 09), HSF diet + placebo (HSF, n = 09), HSF + BLE (n = 09). Evaluation included nutritional, metabolic and hormonal analysis; and renal and cardiac parameters. HSF groups presented obesity, dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, insulin resistance. BLE showed protection against effects on hypertriglyceridemia, insulin resistance, renal damage, and structural and functional alterations of the heart. Conclusion: Bergamot leaf extract shows potential as a therapeutic to treat CRMS in animals fed with a high sugar-fat diet.


Asunto(s)
Citrus , Resistencia a la Insulina , Síndrome Metabólico , Aceites Volátiles , Animales , Citrus/química , Dieta Alta en Grasa/efectos adversos , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Azúcares/uso terapéutico
6.
Antioxidants (Basel) ; 10(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068281

RESUMEN

Dietary flavonoids stimulate autophagy and prevent liver dysfunction, but the upstream signaling pathways triggered by these compounds are not well understood. Certain polyphenols bind directly to NRH-quinone oxidoreductase 2 (NQO2) and inhibit its activity. NQO2 is highly expressed in the liver, where it participates in quinone metabolism, but recent evidence indicates that it may also play a role in the regulation of oxidative stress and autophagy. Here, we addressed a potential role of NQO2 in autophagy induction by flavonoids. The pro-autophagic activity of seven flavonoid aglycons correlated perfectly with their ability to inhibit NQO2 activity, and flavones such as apigenin and luteolin showed the strongest activity in all assays. The silencing of NQO2 strongly reduced flavone-induced autophagic flux, although it increased basal LC3-II levels in HepG2 cells. Both flavones induced AMP kinase (AMPK) activation, while its reduction by AMPK beta (PRKAB1) silencing inhibited flavone-induced autophagy. Interestingly, the depletion of NQO2 levels by siRNA increased the basal AMPK phosphorylation but abrogated its further increase by apigenin. Thus, NQO2 contributes to the negative regulation of AMPK activity and autophagy, while its targeting by flavones releases pro-autophagic signals. These findings imply that NQO2 works as a flavone receptor mediating autophagy and may contribute to other hepatic effects of flavonoids.

7.
Antioxidants (Basel) ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498213

RESUMEN

The aim of the study is to compare the qualitative and semi-quantitative profile of the polyphenol fraction purified from the leaf (BLPF) and fruit (BFPF) of bergamot (Citrus bergamia), and to evaluate their antioxidant and anti-inflammatory activity. The analytical qualitative profile was carried out by LC-ESI/MS using three different approaches: targeted (searching analytes already reported in bergamot extract), semi-targeted (a selective search of 3-hydroxy-3-methylglutarate [HMG] derivatives involved in the cholesterol reducing activity of BPF) and untargeted. A total number of 108 compounds were identified by using the three approaches, 100 of which are present in both the extracts thus demonstrating a good qualitative overlapping of polyphenols between the two extracts. The antioxidant activity was higher for BLPF in respect to BFPF but when normalized in respect to the polyphenol content they were almost overlapping. Both the extracts were found to dose dependently inhibit cell inflammation stimulated with IL-1α. In conclusion, the comparison of the qualitative and quantitative profile of polyphenols as well as of the antioxidant and anti-inflammatory activity of bergamot leaf and fruit well indicates that leaf is a valid source of bergamot polyphenol extraction and an even richer source of polyphenol in respect to the fruit.

8.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198335

RESUMEN

The accumulation of aggregated α-synuclein (αSyn) is a hallmark of Parkinson's disease (PD). Current evidence indicates that small soluble αSyn oligomers (αSynOs) are the most toxic species among the forms of αSyn aggregates, and that size and topological structural properties are crucial factors for αSynOs-mediated toxicity, involving the interaction with either neurons or glial cells. We previously characterized a human αSynO (H-αSynO) with specific structural properties promoting toxicity against neuronal membranes. Here, we tested the neurotoxic potential of these H-αSynOs in vivo, in relation to the neuropathological and symptomatic features of PD. The H-αSynOs were unilaterally infused into the rat substantia nigra pars compacta (SNpc). Phosphorylated αSyn (p129-αSyn), reactive microglia, and cytokine levels were measured at progressive time points. Additionally, a phagocytosis assay in vitro was performed after microglia pre-exposure to αsynOs. Dopaminergic loss, motor, and cognitive performances were assessed. H-αSynOs triggered p129-αSyn deposition in SNpc neurons and microglia and spread to the striatum. Early and persistent neuroinflammatory responses were induced in the SNpc. In vitro, H-αSynOs inhibited the phagocytic function of microglia. H-αsynOs-infused rats displayed early mitochondrial loss and abnormalities in SNpc neurons, followed by a gradual nigrostriatal dopaminergic loss, associated with motor and cognitive impairment. The intracerebral inoculation of structurally characterized H-αSynOs provides a model of progressive PD neuropathology in rats, which will be helpful for testing neuroprotective therapies.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo , Animales , Citocinas/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Inflamación , Masculino , Microglía/metabolismo , Neuronas/metabolismo , Fagocitosis , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Sustancia Negra/patología
9.
Mol Pharmacol ; 98(5): 620-633, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32913139

RESUMEN

N-ribosyldihydronicotinamide:quinone oxidoreductase 2 (NQO2/QR2, Enzyme Commission number 1.10.99.2) is a cytosolic enzyme, abundant in the liver and variably expressed in mammalian tissues. Cloned 30 years ago, it was characterized as a flavoenzyme catalyzing the reduction of quinones and pseudoquinones. To do so, it uses exclusively N-alkyl nicotinamide derivatives, without being able to recognize NADH, the reference hydrure donor compound, in contrast to its next of a kind, NAD(P)H:quinone oxidoreductase 1 (NQO1). For a long time both enzymes have been considered as key detoxifying enzymes in quinone metabolism, but more recent findings point to a more toxifying function of NQO2, particularly with respect to ortho-quinones. In fact, during the reduction of substrates, NQO2 generates fairly unstable intermediates that reoxidize immediately back to the original quinone, creating a futile cycle, the byproducts of which are deleterious reactive oxygen species. Beside this peculiarity, it is a target for numerous drugs and natural compounds such as melatonin, chloroquine, imiquimod, resveratrol, piceatannol, quercetin, and other flavonoids. Most of these enzyme-ligand interactions have been documented by numerous crystallographic studies, and now NQO2 is one of the best represented proteins in the structural biology database. Despite evidence for a causative role in several important diseases, the functional role of NQO2 remains poorly explored. In the present review, we aimed at detailing the main characteristics of NQO2 from a molecular pharmacology perspective. By drawing a clear border between facts and speculations, we hope to stimulate the future research toward a better understanding of this intriguing drug target. SIGNIFICANCE STATEMENT: Evidence is reviewed on the prevalent toxifying function of N-ribosyldihydronicotinamide:quinone oxidoreductase 2 while catalyzing the reduction of ortho-quinones such as dopamine quinone. The product of this reaction is unstable and generates a futile but harmful cycle (substrate/product/substrate) associated with reactive oxygen species generation.


Asunto(s)
Quinona Reductasas/metabolismo , Quinonas/metabolismo , Animales , Humanos , Hígado/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Nutrients ; 11(6)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167512

RESUMEN

: Bergamot flavonoids counteract dyslipidemia and hyperglycemia but fail to induce a significant weight loss. Here, we evaluated the efficacy of bergamot polyphenol extract complex (BPE-C), a novel bergamot juice-derived formulation enriched with flavonoids and pectins, on several metabolic syndrome parameters. Obese patients with atherogenic index of plasma (AIP) over 0.34 and mild hyperglycemia were recruited to a double-blind randomized trial comparing two doses of BPE-C (650 and 1300 mg daily) with placebo. Fifty-two subjects met the inclusion criteria and were assigned to three experimental groups. Fifteen subjects per group completed 90 days-trial. BPE-C reduced significantly fasting glucose by 18.1%, triglycerides by 32% and cholesterol parameters by up to 41.4%, leading to a powerful reduction of AIP (below 0.2) in the high dose group. The homeostasis model assessment of insulin resistance (HOMA-IR) and insulin levels were also reduced. Moreover, BPE-C decreased body weight by 14.8% and body mass index by 15.9% in BPE-C high group. This correlated with a significant reduction of circulating hormones balancing caloric intake, including leptin, ghrelin and upregulation of adiponectin. All effects showed a dose-dependent tendency. This study suggests that food supplements, containing full spectrum of bergamot juice components, such as BPE-C efficiently induce a combination of weight loss and insulin sensitivity effects together with a robust reduction of atherosclerosis risk.


Asunto(s)
Citrus/química , Síndrome Metabólico/tratamiento farmacológico , Pectinas/administración & dosificación , Extractos Vegetales/farmacología , Polifenoles/farmacología , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/tratamiento farmacológico , Extractos Vegetales/química , Polifenoles/química , Pérdida de Peso
11.
Antioxidants (Basel) ; 8(3)2019 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-30884780

RESUMEN

Obesity is a potent risk factor for kidney disease as it increases the possibility of developing diabetes and hypertension, and it has a direct impact on the development of chronic kidney disease and end-stage renal disease. In this study, we tested the effect of bergamot polyphenolic fraction in a cafeteria with diet-fed rats, an excellent experimental model for studying human metabolic syndrome, as it is able to induce severe obesity with insulin resistance and high plasma triglyceride levels more efficiently than a traditional lard-based high-fat diet used in rodent models. We analyzed the plasmatic oxidative balance by photometric tests, and the expression of cytoplasmic antioxidant enzymes (superoxide dismutase 1 and glutatione S-tranferasi P1) and apoptotic markers (Caspase 8 and 9) in kidney tissues by Western blot analysis. Our results clearly showed that the cafeteria diet induces a marked pro-oxidant effect: significant reduction of plasmatic antioxidant capacity; downregulation of cytoplasmic antioxidant enzymes expression; and activation of apoptotic pathways. All these hallmarks of redox disequilibrium were mitigated by treatment with polyphenolic fraction of bergamot, highlighting its antioxidant effect in the metabolic syndrome. Our data show that the link between obesity and renal damage could be represented by oxidative stress.

12.
Mol Pharmacol ; 95(3): 269-285, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30567956

RESUMEN

Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl- and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC50 = 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases.


Asunto(s)
Piridinas/farmacología , Alcaloides de Pirrolicidina/farmacología , Quinona Reductasas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Masculino , Ratones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
13.
Nutrients ; 10(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388763

RESUMEN

Wrong alimentary behaviors and so-called "junk food" are a driving force for the rising incidence of non-alcoholic fatty liver disease (NAFLD) among children and adults. The "junk food" toxicity can be studied in "cafeteria" (CAF) diet animal model. Young rats exposed to CAF diet become obese and rapidly develop NAFLD. We have previously showed that bergamot (Citrus bergamia Risso et Poiteau) flavonoids, in the form of bergamot polyphenol fraction (BPF), effectively prevent CAF diet-induced NAFLD in rats. Here, we addressed if BPF can accelerate therapeutic effects of weight loss induced by a normocaloric standard chow (SC) diet. 21 rats fed with CAF diet for 16 weeks to induce NAFLD with inflammatory features (NASH) were divided into three groups. Two groups were switched to SC diet supplemented or not with BPF (CAF/SC±BPF), while one group continued with CAF diet (CAF/CAF) for 10 weeks. BPF had no effect on SC diet-induced weight loss, but it accelerated hepatic lipid droplets clearance and reduced blood triglycerides. Accordingly, BPF improved insulin sensitivity, but had little effect on leptin levels. Interestingly, the inflammatory parameters were still elevated in CAF/SC livers compared to CAF/CAF group after 10 weeks of dietary intervention, despite over 90% hepatic fat reduction. In contrast, BPF supplementation decreased hepatic inflammation by reducing interleukin 6 (Il6) mRNA expression and increasing anti-inflammatory Il10, which correlated with fewer Kupffer cells and lower inflammatory foci score in CAF/SC+BPF livers compared to CAF/SC group. These data indicate that BPF mediates a specific anti-inflammatory activity in livers recovering from NASH, while it boosts lipid-lowering and anti-diabetic effects of the dietary intervention.


Asunto(s)
Antiinflamatorios/farmacología , Citrus/química , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Polifenoles/farmacología , Animales , Dieta , Dieta Alta en Grasa , Masculino , Polifenoles/química , Ratas , Pérdida de Peso
14.
Data Brief ; 19: 1327-1334, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30229008

RESUMEN

Bergamot Polyphenol Fraction (BPF®) is a natural mixture of Citrus flavonoids extracted from processed bergamot fruits. It has been shown to counteract cardiovascular risk factors and to prevent liver steatosis in rats and patients. Hepatic effects of BPF correlate with its ability to stimulate liver autophagy. Six aglyconic flavonoids have been identified in the proautophagic fraction of the hydrolysis product of BPF (A-BPF): naringenin, hesperetin, eridictyol, diosmetin, apigenin and luteolin. We report here the output parameters of high resolution mass spectrometry analysis of these flavonoids and chemical structures of their parent compounds. The second set of data shows the proautophagic activity of BPF flavonoids in a hepatic cell line HepG2 analyzed by a flow cytometry approach. The method is based on the red to green fluorescence intensity ratio analysis of DsRed -LC3- GFP, which is stably expressed in HepG2 cells. Proportional analysis of ATG indexes allowed us to address a relative contribution of individual compounds to the proautophagic activity of the A-BPF mixture and evaluate if the effect was additive. Qualitative analysis of ATG indexes compared the effects of flavonoids at equal concentrations in the presence and absence of palmitic acid and chloroquine. The Excel files reporting the analysis of flow cytometry data are available in the public repository.

15.
J Nutr Biochem ; 58: 119-130, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29890411

RESUMEN

Autophagy dysfunction has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Natural compounds present in bergamot polyphenol fraction (BPF) prevent NAFLD and induce autophagy in rat livers. Here, we employed HepG2 cells expressing DsRed-LC3-GFP, a highly sensitive model system to screen for proautophagic compounds present in BPF. BPF induced autophagy in a time- and dose-dependent fashion and the effect was amplified in cells loaded with palmitic acid. Autophagy was mediated by the hydrophobic fraction of acid-hydrolyzed BPF (A-BPF), containing six flavanone and flavone aglycones as identified by liquid chromatography-high-resolution mass spectrometry. Among them, naringenin, hesperitin, eriodictyol and diosmetin were weak inducers of autophagy. Apigenin showed the strongest and dose-dependent proautophagic activity at early time points (6 h). Luteolin induced a biphasic autophagic response, strong at low doses and inhibitory at higher doses. Both flavones were toxic in HepG2 cells and in differentiated human liver progenitors HepaRG upon longer treatments (24 h). In contrast, BPF and A-BPF did not show any toxicity, but induced a persistent increase in autophagic flux. A mixture of six synthetic aglycones mimicking A-BPF was sufficient to induce a similar autophagic response, but it was mildly cytotoxic. Thus, while six main BPF flavonoids fully account for its proautophagic activity, their combined effect is not sufficient to abrogate cytotoxicity of individual compounds. This suggests that a natural polyphenol phytocomplex, such as BPF, is a safer and more effective strategy for the treatment of NAFLD than the use of pure flavonoids.


Asunto(s)
Autofagia/efectos de los fármacos , Citrus/química , Flavonoides/farmacología , Hígado/efectos de los fármacos , Polifenoles/farmacología , Apigenina/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Flavonoides/química , Células Hep G2 , Humanos , Hidrólisis , Hígado/citología , Luteolina/farmacología , Enfermedad del Hígado Graso no Alcohólico/patología , Polifenoles/química , Pruebas de Toxicidad
16.
Front Mol Neurosci ; 11: 144, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755317

RESUMEN

The role of phagocytosis in the neuroprotective function of microglia has been appreciated for a long time, but only more recently a dysregulation of this process has been recognized in Parkinson's disease (PD). Indeed, microglia play several critical roles in central nervous system (CNS), such as clearance of dying neurons and pathogens as well as immunomodulation, and to fulfill these complex tasks they engage distinct phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be impaired by defects in molecular machinery regulating critical homeostatic mechanisms, including autophagy. Here, we briefly summarize current knowledge on molecular mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia in PD. Then we focus more in detail on the possible functional role of microglial phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported. Altered expression of target-recognizing receptors and lysosomal receptor CD68, as well as the emerging determinant role of α-synuclein (α-SYN) in phagocytic function is discussed. We finally discuss the rationale to consider phagocytic processes as a therapeutic target to prevent or slow down dopaminergic degeneration.

17.
Br J Pharmacol ; 175(16): 3298-3314, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29570770

RESUMEN

BACKGROUND AND PURPOSE: Microglial phenotype and phagocytic activity are deregulated in Parkinson's disease (PD). PPARγ agonists are neuroprotective in experimental PD, but their role in regulating microglial phenotype and phagocytosis has been poorly investigated. We addressed it by using the PPARγ agonist MDG548. EXPERIMENTAL APPROACH: Murine microglial cell line MMGT12 was stimulated with LPS and/or MDG548, and their effect on phagocytosis of fluorescent microspheres or necrotic neurons was investigated by flow cytometry. Cytokines and markers of microglia phenotype, such as mannose receptor C type 1; MRC1), Ym1 and CD68 were measured by elisa and fluorescent immunohistochemistry. Levels of Beclin-1, which plays a role in microglial phagocytosis, were measured by Western blotting. In the in vivo MPTP-probenecid (MPTPp) model of PD in mice, MDG548 was tested on motor impairment, nigral neurodegeneration, microglial activation and phenotype. KEY RESULTS: In LPS-stimulated microglia, MDG548 increased phagocytosis of both latex beads and necrotic cells, up-regulated the expression of MRC1, CD68 and to a lesser extent IL-10, while blocking the LPS-induced increase of TNF-α and iNOS. MDG548 also induced Beclin-1. Chronic MPTPp treatment in mice down-regulated MRC1 and TGF-ß and up-regulated TNF-α and IL-1ß immunoreactivity in activated CD11b-positive microglia, causing the death of nigral dopaminergic neurons. MDG548 arrested MPTPp-induced cell death, enhanced MRC1 and restored cytokine levels. CONCLUSIONS AND IMPLICATIONS: This study adds a novel mechanism for PPARγ-mediated neuroprotection in PD and suggests that increasing phagocytic activity and anti-inflammatory markers may represent an effective disease-modifying approach.


Asunto(s)
Microglía/efectos de los fármacos , Neuroprotección/fisiología , PPAR gamma/agonistas , Trastornos Parkinsonianos/metabolismo , Fagocitosis/efectos de los fármacos , Tiobarbitúricos/farmacología , Animales , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Microglía/fisiología , Microesferas , PPAR gamma/metabolismo , Fenotipo
19.
Autophagy ; 11(7): 1063-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26046590

RESUMEN

Oxidative stress (OS) stimulates autophagy in different cellular systems, but it remains controversial if this rule can be generalized. We have analyzed the effect of chronic OS induced by the parkinsonian toxin paraquat (PQ) on autophagy in astrocytoma cells and primary astrocytes, which represent the first cellular target of neurotoxins in the brain. PQ decreased the basal levels of LC3-II and LC3-positive vesicles, and its colocalization with lysosomal markers, both in the absence and presence of chloroquine. This was paralleled by increased number and size of SQSTM1/p62 aggregates. Downregulation of autophagy was also observed in cells chronically exposed to hydrogen peroxide or nonlethal concentrations of PQ, and it was associated with a reduced astrocyte capability to protect dopaminergic cells from OS in co-cultures. Surprisingly, PQ treatment led to inhibition of MTOR, activation of MAPK8/JNK1 and MAPK1/ERK2-MAPK3/ERK1 and upregulation of BECN1/Beclin 1 expression, all signals typically correlating with induction of autophagy. Reduction of OS by NMDPEF, a specific NQO2 inhibitor, but not by N-acetylcysteine, abrogated the inhibitory effect of PQ and restored autophagic flux. Activation of NQO2 by PQ or menadione and genetic manipulation of its expression confirmed the role of this enzyme in the inhibitory action of PQ on autophagy. PQ did not induce NFE2L2/NRF2, but when it was co-administered with NMDPEF NFE2L2 activity was enhanced in a SQSTM1-independent fashion. Thus, a prolonged OS in astrocytes inhibits LC3 lipidation and impairs autophagosome formation and autophagic flux, in spite of concomitant activation of several pro-autophagic signals. These findings outline an unanticipated neuroprotective role of astrocyte autophagy and identify in NQO2 a novel pharmacological target for its positive modulation.


Asunto(s)
Astrocitos/patología , Autofagia/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Neurotoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Paraquat/toxicidad , Quinona Reductasas/metabolismo , Acetilcisteína/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antioxidantes/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Astrocitoma/patología , Compuestos de Bencidrilo/farmacología , Inhibidores Enzimáticos/farmacología , Formamidas/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/patología , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Proteína Sequestosoma-1 , Transducción de Señal/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
20.
J Nutr Biochem ; 26(9): 938-48, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26025327

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries. Defective autophagy of lipid droplets (LDs) in hepatocytes, also known as lipophagy, has recently been identified as a possible pathophysiological mechanism of NAFLD. Experimental and epidemiological evidence suggests that dietary polyphenols may prevent NAFLD. To address this hypothesis and analyze the underlying mechanisms, we supplemented bergamot polyphenol fraction (BPF) to cafeteria (CAF) diet-fed rats, a good model for pediatric metabolic syndrome and NAFLD. BPF treatment (50 mg/kg/day supplemented with drinking water, 3 months) potently counteracted the pathogenic increase of serum triglycerides and had moderate effects on blood glucose and obesity in this animal model. Importantly, BPF strongly reduced hepatic steatosis as documented by a significant decrease in total lipid content (-41.3% ± 12% S.E.M.), ultrasound examination and histological analysis of liver sections. The morphometric analysis of oil-red stained sections confirmed a dramatic reduction in LDs parameters such as total LD area (48.5% ± 15% S.E.M.) in hepatocytes from CAF+BPF rats. BPF-treated livers showed increased levels of LC3 and Beclin 1 and reduction of SQSTM1/p62, suggesting autophagy stimulation. Consistent with BPF stimulation of lipophagy, higher levels of LC3II were found in the LD subcellular fractions of BPF-expose livers. This study demonstrates that the liver and its lipid metabolism are the main targets of bergamot flavonoids, supporting the concept that supplementation of BPF is an effective strategy to prevent NAFLD.


Asunto(s)
Citrus/química , Suplementos Dietéticos , Modelos Animales de Enfermedad , Lipotrópicos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Animales , Fármacos Antiobesidad/uso terapéutico , Autofagia , Biomarcadores/sangre , Biomarcadores/metabolismo , Dieta Occidental/efectos adversos , Frutas/química , Humanos , Italia , Gotas Lipídicas/diagnóstico por imagen , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Hígado/diagnóstico por imagen , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/etiología , Síndrome Metabólico/fisiopatología , Proteínas Asociadas a Microtúbulos/agonistas , Proteínas Asociadas a Microtúbulos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Obesidad/prevención & control , Distribución Aleatoria , Ratas Wistar , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA