Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Transl Med ; 22(1): 453, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741142

RESUMEN

BACKGROUND: The lack of distinct biomarkers for pancreatic cancer is a major cause of early-stage detection difficulty. The pancreatic cancer patient group with high metabolic tumor volume (MTV), one of the values measured from positron emission tomography-a confirmatory method and standard care for pancreatic cancer, showed a poorer prognosis than those with low MTV. Therefore, MTV-associated differentially expressed genes (DEGs) may be candidates for distinctive markers for pancreatic cancer. This study aimed to evaluate the possibility of MTV-related DEGs as markers or therapeutic targets for pancreatic cancer. METHODS: Tumor tissues and their normal counterparts were obtained from patients undergoing preoperative 18F-FDG PET/CT. The tissues were classified into MTV-low and MTV-high groups (7 for each) based on the MTV2.5 value of 4.5 (MTV-low: MTV2.5 < 4.5, MTV-high: MTV2.5 ≥ 4.5). Gene expression fold change was first calculated in cancer tissue compared to its normal counter and then compared between low and high MTV groups to obtain significant DEGs. To assess the suitability of the DEGs for clinical application, the correlation of the DEGs with tumor grades and clinical outcomes was analyzed in TCGA-PAAD, a large dataset without MTV information. RESULTS: Total RNA-sequencing (MTV RNA-Seq) revealed that 44 genes were upregulated and 56 were downregulated in the high MTV group. We selected the 29 genes matching MTV RNA-seq patterns in the TCGA-PAAD dataset, a large clinical dataset without MTV information, as MTV-associated genes (MAGs). In the analysis with the TCGA dataset, MAGs were significantly associated with patient survival, treatment outcomes, TCGA-PAAD-suggested markers, and CEACAM family proteins. Some MAGs showed an inverse correlation with miRNAs and were confirmed to be differentially expressed between normal and cancerous pancreatic tissues. Overexpression of KIF11 and RCC1 and underexpression of ADCY1 and SDK1 were detected in ~ 60% of grade 2 pancreatic cancer patients and associated with ~ 60% mortality in stages I and II. CONCLUSIONS: MAGs may serve as diagnostic markers and miRNA therapeutic targets for pancreatic cancer. Among the MAGs, KIF11, RCC1, ADCY, and SDK1 may be early diagnostic markers.


Asunto(s)
Biomarcadores de Tumor , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Carga Tumoral , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Masculino , Femenino , Terapia Molecular Dirigida , Persona de Mediana Edad , Anciano , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18/metabolismo
2.
Cell Death Discov ; 10(1): 81, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360723

RESUMEN

Cancer stem-like cell (CSC) is thought to be responsible for ovarian cancer recurrence. CD24 serves as a CSC marker for ovarian cancer and regulates the expression of miRNAs, which are regulators of CSC phenotypes. Therefore, CD24-regulated miRNAs may play roles in manifesting the CSC phenotypes in ovarian cancer cells. Our miRNA transcriptome analysis showed that 94 miRNAs were up or down-regulated in a CD24-high clone from an ovarian cancer patient compared to a CD24-low one. The CD24-dependent expression trend of the top 7 upregulated miRNAs (miR-199a-3p, 34c, 199a-5p, 130a, 301a, 214, 34b*) was confirmed in other 8 clones (4 clones for each group). CD24 overexpression upregulated the expression of miR-199a-3p, 34c, 199a-5p, 130a, 301a, 214, and 34b* in TOV112D (CD24-low) cells compared to the control, while CD24 knockdown downregulated the expression of miR-199a-3p, 199a-5p, 130a, 301a, and 34b* in OV90 (CD24-high) cells. miR-130a and 301a targeted CDK19, which induced a cellular quiescence-like state (increased G0/G1 phase cell population, decreased cell proliferation, decreased colony formation, and decreased RNA synthesis) and resistance to platinum-based chemotherapeutic agents. CD24 regulated the expression of miR-130a and 301a via STAT4 and YY1 phosphorylation mediated by Src and FAK. miR-130a and 301a were positively correlated in expression with CD24 in ovarian cancer patient tissues and negatively correlated with CDK19. Our results showed that CD24 expression may induce a cellular quiescence-like state and resistance to platinum-based chemotherapeutic agents in ovarian cancer via miR-130a and 301a upregulation. CD24-miR-130a/301a-CDK19 signaling axis could be a prognostic marker for or a potential therapeutic target against ovarian cancer recurrence.

3.
Medicina (Kaunas) ; 60(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276060

RESUMEN

ERBB3, a key member of the receptor tyrosine kinase family, is implicated in the progression and development of various human cancers, affecting cellular proliferation and survival. This study investigated the expression of ERBB3 isoforms in renal clear cell carcinoma (RCC), utilizing data from 538 patients from The Cancer Genome Atlas (TCGA) Firehose Legacy dataset. Employing the SUPPA2 tool, the activity of 10 ERBB3 isoforms was examined, revealing distinct expression patterns in RCC. Isoforms uc001sjg.3 and uc001sjh.3 were found to have reduced activity in tumor tissues, while uc010sqb.2 and uc001sjl.3 demonstrated increased activity. These variations in isoform expression correlate with patient survival and tumor aggressiveness, indicating their complex role in RCC. The study, further, utilizes CIBERSORTx to analyze the association between ERBB3 isoforms and immune cell profiles in the tumor microenvironment. Concurrently, Gene Set Enrichment Analysis (GSEA) was applied, establishing a strong link between elevated levels of ERBB3 isoforms and critical oncogenic pathways, including DNA repair and androgen response. RT-PCR analysis targeting the exon 21-23 and exon 23 regions of ERBB3 confirmed its heightened expression in tumor tissues, underscoring the significance of alternative splicing and exon utilization in cancer development. These findings elucidate the diverse impacts of ERBB3 isoforms on RCC, suggesting their potential as diagnostic markers and therapeutic targets. This study emphasizes the need for further exploration into the specific roles of these isoforms, which could inform more personalized and effective treatment modalities for renal clear cell carcinoma.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Perfilación de la Expresión Génica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Genómica , Regulación Neoplásica de la Expresión Génica/genética , Microambiente Tumoral , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
4.
Cell Prolif ; : e13582, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030594

RESUMEN

Increased expression of CD24 and MET, markers for cancer stem-like cells (CSCs), are each associated with ovarian cancer severity. However, whether CD24 and MET are co-expressed in ovarian CSCs and, if so, how they are related to CSC phenotype manifestation remains unknown. Our immunohistochemistry analysis showed that the co-expression of CD24 and MET was associated with poorer patient survival in ovarian cancer than those without. In addition, analyses using KM plotter and ROC plotter presented that the overexpression of CD24 or MET in ovarian cancer patients was associated with resistance to platinum-based chemotherapy. In our miRNA transcriptome and putative target genes analyses, miR-181a was downregulated in CD24-high ovarian cancer cells compared to CD24-low and predicted to bind to CD24 and MET 3'UTRs. In OV90 and SK-OV-3 cells, CD24 downregulated miR-181a expression by Src-mediated YY1 activation, leading to increased expression of MET. And, CD24 or MET knockdown or miR-181a overexpression inhibited the manifestation of CSC phenotypes, cellular quiescence-like state and chemoresistance, in OV90 and SK-OV-3 cells: increased colony formation, decreased G0/G1 phase cell population and increased sensitivity to Cisplatin and Carboplatin. Our findings suggest that CD24-miR-181a-MET may consist of a signalling route for ovarian CSCs, therefore being a combinatory set of markers and therapeutic targets for ovarian CSCs.

5.
Oncogene ; 39(3): 664-676, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534187

RESUMEN

Integrin beta 4 (ITGB4) overexpression in cancer cells contributes to cancer progression. However, the role of stromal ITGB4 expression in cancer progression remains poorly understood, despite stromal ITGB4 overexpression in malignant cancers. In our study, ITGB4-overexpressing triple negative breast cancer (TNBC) cells provided cancer-associated fibroblasts (CAFs) with ITGB4 proteins via exosomes, which induced BNIP3L-dependent mitophagy and lactate production in CAFs. In coculture assays, the ITGB4-induced mitophagy and glycolysis were suppressed in CAFs by knocking down ITGB4 or inhibiting exosome generation in MDA-MB-231, or blocking c-Jun or AMPK phosphorylation in CAFs. ITGB4-overexpressing CAF-conditioned medium promoted the proliferation, epithelial-to-mesenchymal transition, and invasion of breast cancer cells. In a co-transplant mouse model, MDA-MB-231 made a bigger tumor mass with CAFs than ITGB4 knockdown MDA-MB-231. Herein, we presented how TNBC-derived ITGB4 protein triggers glycolysis in CAFs via BNIP3L-dependent mitophagy and suggested the possibility that ITGB4-induced mitophagy could be targeted as a cancer therapy.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Exosomas/metabolismo , Integrina beta4/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Mama/patología , Mama/cirugía , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Transición Epitelial-Mesenquimal , Femenino , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Integrina beta4/genética , Proteínas de la Membrana/metabolismo , Ratones , Mitofagia , Comunicación Paracrina , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias de la Mama Triple Negativas/cirugía , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancer Lett ; 469: 256-265, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31672492

RESUMEN

Stroma-derived exosomal microRNA (exomiR) contributes to tumor progression, however, which remains poorly understood. In our study, we analyzed exomiRs from the cancer-associated fibroblast (CAF) and normal fibroblast (NF) isolated from an invasive ductal carcinoma (IDC) patient and found that the level of microRNA (miR)-4516 was approximately 5-fold lower in CAF-derived exosomes than NF-derived ones. In gene annotation analysis, miR-4516 target genes were mainly associated with the regulation of proliferation. miR-4516 overexpression or mimic treatment suppressed the proliferation of breast cancer cells, especially triple negative breast cancer (TNBC) cells. Among miR-4516 targets, FOSL1 was overexpressed in TNBC cells compared to non-TNBC cells and promoted tumor proliferation. The expression of miR-4516 and FOSL1 was reversely correlated in breast cancer patient tissues. Particularly, TNBC patients with high FOSL1 expression showed a significant poorer survival than those with low FOSL1 expression. Our results show that the loss of miR-4516 from CAF-derived exosomes is associated with FOSL1-dependent TNBC progression and suggest that miR-4516 can be used as an anti-cancer drug for TNBC.


Asunto(s)
MicroARNs/genética , Proteínas Proto-Oncogénicas c-fos/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Progresión de la Enfermedad , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/genética , Exosomas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células del Estroma/metabolismo , Células del Estroma/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
7.
Commun Biol ; 2: 313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428701

RESUMEN

Tumor growth increases compressive stress within a tissue, which is associated with solid tumor progression. However, very little is known about how compressive stress contributes to tumor progression. Here, we show that compressive stress induces glycolysis in human breast cancer associated fibroblast (CAF) cells and thereby contributes to the expression of epithelial to mesenchymal (EMT)- and angiogenesis-related genes in breast cancer cells. Lactate production was increased in compressed CAF cells, in a manner dependent on the expression of metabolic genes ENO2, HK2, and PFKFB3. Conditioned medium from compressed CAFs promoted the proliferation of breast cancer cells and the expression of EMT and/or angiogenesis-related genes. In patient tissues with high compressive stress, the expression of compression-induced metabolic genes was significantly and positively correlated with EMT and/or angiogenesis-related gene expression and metastasis size. These findings illustrate a mechanotransduction pathway involving stromal glycolysis that may be relevant also for other solid tumours.


Asunto(s)
Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/genética , Fibroblastos Asociados al Cáncer/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Neovascularización Patológica/genética , Estrés Mecánico , Alginatos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Bases de Datos Genéticas , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Mecanotransducción Celular/efectos de los fármacos , Metástasis de la Neoplasia , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
8.
Exp Mol Med ; 51(1): 1-11, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30617277

RESUMEN

Pluripotent stem cell transplantation is a promising regenerative strategy for treating intractable diseases. However, securing human leukocyte antigen (HLA)-matched donor stem cells is extremely difficult. The traditional approach for generating such cells is to establish homozygous pluripotent stem cell lines. Unfortunately, because of HLA diversity, this strategy is too time-consuming to be of practical use. HLA engineering of donor stem cells has been proposed recently as a means to evade graft-versus-host rejection in stem cell allotransplantation. This approach would be advantageous in both time and cost to the traditional method, but its feasibility must be investigated. In this study, we used CRISPR/Cas9 to knockout HLA-B from inducible pluripotent stem cells (iPSCs) with heterogenous HLA-B and showed that the HLA-B knockout iPSCs resulted in less immunogenicity in HLA-B antisera than that in the control. Our results support the feasibility of HLA-engineered iPSCs in stem cell allotransplantation.


Asunto(s)
Sistemas CRISPR-Cas , Antígenos HLA/genética , Histocompatibilidad , Células Madre Pluripotentes Inducidas/inmunología , Animales , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Masculino , Ratones , Ratones Desnudos
9.
Exp Mol Med ; 50(8): 1-2, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158563

RESUMEN

After online publication of this article, the authors noticed an error in the Figure section. The correct statement of this article should have read as below.

10.
PLoS One ; 13(6): e0198740, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29879214

RESUMEN

It is unclear how systemic administration of mesenchymal stem cells (MSCs) controls local inflammation. The aim of this study was to evaluate the therapeutic effects of human MSCs on inflammatory arthritis and to identify the underlying mechanisms. Mice with collagen antibody-induced arthritis (CAIA) received two intraperitoneal injections of human bone marrow-derived MSCs. The clinical and histological features of injected CAIA were then compared with those of non-injected mice. The effect of MSCs on induction of regulatory T cells was examined both in vitro and in vivo. We also examined multiple cytokines secreted by peritoneal mononuclear cells, along with migration of MSCs in the presence of stromal cell-derived factor-1 alpha (SDF-1α) and/or regulated on activation, normal T cell expressed and secreted (RANTES). Sections of CAIA mouse joints and spleen were stained for human anti-nuclear antibodies (ANAs) to confirm migration of injected human MSCs. The results showed that MSCs alleviated the clinical and histological signs of synovitis in CAIA mice. Peritoneal lavage cells from mice treated with MSCs expressed higher levels of SDF-1α and RANTES than those from mice not treated with MSCs. MSC migration was more prevalent in the presence of SDF-1α and/or RANTES. MSCs induced CD4+ T cells to differentiate into regulatory T cells in vitro, and expression of FOXP3 mRNA was upregulated in the forepaws of MSC-treated CAIA mice. Synovial and splenic tissues from CAIA mice receiving human MSCs were positive for human ANA, suggesting recruitment of MSCs. Taken together, these results suggest that MSCs migrate into inflamed tissues and directly induce the differentiation of CD4+ T cells into regulatory T cells, which then suppress inflammation. Thus, systemic administration of MSCs may be a therapeutic option for rheumatoid arthritis.


Asunto(s)
Artritis Experimental , Diferenciación Celular/inmunología , Quimiocina CCL5/inmunología , Quimiocina CXCL12/inmunología , Trasplante de Células Madre Mesenquimatosas , Linfocitos T Reguladores , Aloinjertos , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Experimental/terapia , Femenino , Factores de Transcripción Forkhead/inmunología , Ratones , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología
11.
Stem Cells Int ; 2018: 9432616, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535785

RESUMEN

Scientists have tried to reprogram various origins of primary cells into human induced pluripotent stem cells (hiPSCs). Every somatic cell can theoretically become a hiPSC and give rise to targeted cells of the human body. However, there have been debates on the controversy about the differentiation propensity according to the origin of primary cells. We reprogrammed hiPSCs from four different types of primary cells such as dermal fibroblasts (DF, n = 3), peripheral blood mononuclear cells (PBMC, n = 3), cord blood mononuclear cells (CBMC, n = 3), and osteoarthritis fibroblast-like synoviocytes (OAFLS, n = 3). Established hiPSCs were differentiated into chondrogenic pellets. All told, cartilage-specific markers tended to express more by the order of CBMC > DF > PBMC > FLS. Origin of primary cells may influence the reprogramming and differentiation thereafter. In the context of chondrogenic propensity, CBMC-derived hiPSCs can be a fairly good candidate cell source for cartilage regeneration. The differentiation of hiPSCs into chondrocytes may help develop "cartilage in a dish" in the future. Also, the ideal cell source of hiPSC for chondrogenesis may contribute to future application as well.

12.
Exp Mol Med ; 50(3): e460, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29568073

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease that typically results in strong inflammation and bone destruction in the joints. It is generally known that the pathogenesis of RA is linked to cardiovascular and periodontal diseases. Though rheumatoid arthritis and periodontitis share many pathologic features such as a perpetual inflammation and bone destruction, the precise mechanism underlying a link between these two diseases has not been fully elucidated. Collagen-induced arthritis (CIA) mice were orally infected with Porphyromonas gingivalis (Pg) or Pg preincubated with an anti-FimA antibody (FimA Ab) specific for fimbriae that are flexible appendages on the cell surface. Pg-infected CIA mice showed oral microbiota disruption and increased alveolar bone loss and had synovitis and joint bone destruction. However, preincubation with FimA Ab led to a significant reduction in the severity of both oral disease and arthritis. Moreover, FimA Ab attenuated bacterial attachment and aggregation on human gingival and rheumatoid arthritis synovial fibroblasts. In addition, we discovered bacteria may utilize dendritic cells, macrophages and neutrophils to migrate into the joints of CIA mice. These results suggest that disrupting Pg fimbriae function by FimA Ab ameliorates RA.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/microbiología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/microbiología , Proteínas Fimbrias/antagonistas & inhibidores , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Porphyromonas gingivalis/patogenicidad , Animales , Anticuerpos Antibacterianos/inmunología , Femenino , Proteínas Fimbrias/inmunología , Inmunohistoquímica , Ratones , Microscopía Confocal , Porphyromonas gingivalis/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Exp Dermatol ; 26(11): 1046-1052, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28418588

RESUMEN

Quantum dots (QDs) have shown great potential for biomedical use in a broad range including diagnostic agents. However, the regulatory mechanism of dermal toxicity is poorly understood. In this study, we investigated how QDs-induced apoptosis is regulated in human keratinocytes. We also examined the effect of carboxylic acid-coated QDs (QD 565 and QD 655) on reactive oxygen species (ROS) production and apoptosis-related cellular signalling. The viability of keratinocyte was inhibited by two types of QDs in a concentration-dependent manner. QDs induce ROS production and blockade of AKT phosphorylation. Moreover, the cleavage of AKT-dependent pro-apoptotic proteins such as poly (ADP-ribose) polymerase, caspases-3 and caspases-9 was significantly increased. We also found that a decrease in cellular ROS level by ROS scavenger, N-acetylcysteine (NAC), resulting in the abolishment of QDs-induced AKT de-phosphorylation and cellular apoptosis. Interestingly, QD 655 had a more cytotoxic effect including oxidative stress and AKT-dependent apoptosis than QD 565. In addition, QD 655 had the cytotoxic potential in the human skin equivalent model (HSEM). These data show that QD-induced intracellular ROS levels may be an important parameter in QD-induced apoptosis. These findings from this study indicate that intracellular ROS levels might determine the apoptotic potential of keratinocyte by QD via blockade of AKT phosphorylation.


Asunto(s)
Apoptosis , Epidermis/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Puntos Cuánticos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Ácidos Carboxílicos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Supervivencia Celular , Células Cultivadas , Humanos , Queratinocitos/metabolismo , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Puntos Cuánticos/química , Transducción de Señal
14.
J Vis Exp ; (120)2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28287507

RESUMEN

Impaired cartilage cannot heal naturally. Currently, the most advanced therapy for defects in cartilage is the transplantation of chondrocytes differentiated from stem cells using cytokines. Unfortunately, cytokine-induced chondrogenic differentiation is costly, time-consuming, and associated with a high risk of contamination during in vitro differentiation. However, biomechanical stimuli also serve as crucial regulatory factors for chondrogenesis. For example, mechanical stress can induce chondrogenic differentiation of stem cells, suggesting a potential therapeutic approach for the repair of impaired cartilage. In this study, we demonstrated that centrifugal gravity (CG, 2,400 × g), a mechanical stress easily applied by centrifugation, induced the upregulation of sex determining region Y (SRY)-box 9 (SOX9) in adipose-derived stem cells (ASCs), causing them to express chondrogenic phenotypes. The centrifuged ASCs expressed higher levels of chondrogenic differentiation markers, such as aggrecan (ACAN), collagen type 2 alpha 1 (COL2A1), and collagen type 1 (COL1), but lower levels of collagen type 10 (COL10), a marker of hypertrophic chondrocytes. In addition, chondrogenic aggregate formation, a prerequisite for chondrogenesis, was observed in centrifuged ASCs.


Asunto(s)
Adipocitos/citología , Cartílago/citología , Centrifugación/métodos , Condrocitos/citología , Condrogénesis , Gravedad Alterada , Células Madre Mesenquimatosas/citología , Diferenciación Celular/fisiología , Células Cultivadas , Humanos
15.
Sci Rep ; 7: 39593, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28084468

RESUMEN

Mesenchymal stem cells (MSCs) have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and clinical treatments. These beneficial effects, however, are sometimes inconsistent and unpredictable. For wider and proper application, scientists sought to improve MSC functions by engineering. We aimed to invent a novel method to produce synthetic biological drugs from engineered MSCs. We investigated the anti-arthritic effect of engineered MSCs in a collagen-induced arthritis (CIA) model. Biologics such as etanercept are the most successful drugs used in anti-cytokine therapy. Biologics are made of protein components, and thus can be theoretically produced from cells including MSCs. MSCs were transfected with recombinant minicircles encoding etanercept (trade name, Enbrel), which is a tumour necrosis factor α blocker currently used to treat rheumatoid arthritis. We confirmed minicircle expression in MSCs in vitro based on GFP. Etanercept production was verified from the conditioned media. We confirmed that self-reproduced etanercept was biologically active in vitro. Arthritis subsided more efficiently in CIA mice injected with mcTNFR2MSCs than in those injected with conventional MSCs or etanercept only. Although this novel strategy is in a very early conceptual stage, it seems to represent a potential alternative method for the delivery of biologics and engineering MSCs.


Asunto(s)
Antirreumáticos/metabolismo , Artritis/terapia , Colágeno/administración & dosificación , Etanercept/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Artritis/inducido químicamente , Artritis Experimental/inducido químicamente , Artritis Experimental/terapia , Productos Biológicos/administración & dosificación , Productos Biológicos/metabolismo , ADN Circular/metabolismo , Sistemas de Liberación de Medicamentos , Vectores Genéticos , Ratones Transgénicos
16.
Stem Cell Res Ther ; 7(1): 184, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931264

RESUMEN

BACKGROUND: Cartilage does not have the capability to regenerate itself. Therefore, stem cell transplantation is a promising therapeutic approach for impaired cartilage. For stem cell transplantation, in vitro enrichment is required; however, stem cells not only become senescent but also lose their differentiation potency during this process. In addition, cytokines are normally used for chondrogenic differentiation induction of stem cells, which is highly expensive and needs an additional step to culture. In this study, we introduced a novel method to induce chondrogenic differentiation of adipose-derived stem cells (ASCs), which are more readily available than bone marrow-derived mesenchymal stem cells(bMSCs), using centrifugal gravity (CG). METHODS: ASCs were stimulated by loading different degrees of CG (0, 300, 600, 1200, 2400, and 3600 g) to induce chondrogenic differentiation. The expression of chondrogenic differentiation-related genes was examined by RT-PCR, real-time PCR, and western blot analyses. The chondrogenic differentiation of ASCs stimulated with CG was evaluated by comparing the expression of positive markers [aggrecan (ACAN) and collagen type II alpha 1 (COL2A1)] and negative markers (COL1 and COL10) with that in ASCs stimulated with transforming growth factor (TGF)-ß1 using micromass culture, immunofluorescence, and staining (Alcian Blue and Safranin O). RESULTS: Expression of SOX9 and SOX5 was upregulated by CG (2400 g for 30 min). Increased expression of ACAN and COL2A1 (positive markers) was detected in monolayer-cultured ASCs after CG stimulation, whereas that of COL10 (a negative marker) was not. Expression of bone morphogenetic protein (BMP) 4, an upstream stimulator of SOX9, was upregulated by CG, which was inhibited by Dorsomorphin (an inhibitor of BMP4). Increased expression of proteoglycan, a major component of cartilage, was confirmed in the micromass culture of ASCs stimulated with CG by Alcian Blue and Safranin O staining. CONCLUSIONS: Chondrogenic differentiation of ASCs can be induced by optimized CG (2400 g for 30 min). Expression of SOX9 is upregulated by CG via increased expression of BMP4. CG has a similar ability to induce SOX9 expression as TGF-ß1.


Asunto(s)
Adipocitos/fisiología , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo , Regulación hacia Arriba/fisiología , Adipocitos/metabolismo , Adulto , Biomarcadores/metabolismo , Cartílago/metabolismo , Cartílago/fisiología , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/fisiología , Gravitación , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Persona de Mediana Edad , Proteoglicanos/metabolismo , Células Madre/fisiología , Ingeniería de Tejidos/métodos , Factor de Crecimiento Transformador beta1/metabolismo
17.
Acta Biomater ; 38: 59-68, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27109762

RESUMEN

UNLABELLED: In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. STATEMENT OF SIGNIFICANCE: Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound closure, neovascularization, and thicker granulation. Therefore, we expect that HRP-catalyzed in situ forming GH hydrogels can serve as an injectable/sprayable carrier of various therapeutic agents for wound healing applications.


Asunto(s)
Quimiocina CCL20 , Diabetes Mellitus Experimental/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Gelatina , Hidrogeles , Interleucina-8 , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Animales , Quimiocina CCL20/química , Quimiocina CCL20/farmacología , Gelatina/química , Gelatina/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Interleucina-8/química , Interleucina-8/farmacología , Ratones , Ratones Endogámicos ICR
18.
In Vitro Cell Dev Biol Anim ; 51(2): 142-50, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25361717

RESUMEN

Bone marrow concentration (BMC) is the most recognized procedure to prepare mesenchymal stem cells for cartilage regeneration. However, bone marrow aspiration is highly invasive and results in low stem cell numbers. Recently, adipose tissue-derived stromal vascular fraction (AT-SVF) was studied as an alternate source of stem cells for cartilage regeneration. However, AT-SVF is not fully characterized in terms of functional equivalence to BMC. Therefore, in this study, we characterized AT-SVF and assessed its suitability as a one-step surgical procedure for cartilage regeneration, as an alternative to BMC. AT-SVF contained approximately sixfold less nucleated cells than BMC. However, adherent cells in AT-SVF were fourfold greater than BMC. Additionally, the colony-forming unit frequency of AT-SVF was higher than that of BMC, at 0.5 and 0.01%, respectively. The mesenchymal stem cell (MSC) population (CD45-CD31-CD90+CD105+) was 4.28% in AT-SVF and 0.42% in BMC, and the adipose-derived stromal cell (ASC) population (CD34+CD31-CD146-) was 32% in AT-SVF and 0.16% in BMC. In vitro chondrogenesis demonstrated that micromass was not formed in BMC, whereas it was clearly formed in AT-SVF. Taken together, uncultured AT-SVF could be used in one-step surgery for cartilage regeneration as a substitute for BMC.


Asunto(s)
Tejido Adiposo/citología , Separación Celular/métodos , Células Madre Mesenquimatosas/fisiología , Antígenos CD34/metabolismo , Células de la Médula Ósea , Cartílago , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Condrogénesis , Ensayo de Unidades Formadoras de Colonias , Expresión Génica , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Persona de Mediana Edad , Regeneración , Células del Estroma
19.
Exp Dermatol ; 23(12): 890-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25256120

RESUMEN

The early growth response (Egr)-1 is a transcriptional factor which plays an important role in the regulation of cell growth, differentiation, cell survival and immune responses. Emerging evidences including our data demonstrate that the Egr-1 expression is up-regulated in the psoriatic skin lesions. The purpose of this study was to investigate the significance and regulatory mechanism of Egr-1 in the pathogenesis of psoriasis. Through microarray analysis, we found out that psoriasin (S100A7) expression was increased in the Egr-1 overexpressed cells. Our results showed that IL-17A increased Egr-1 expression in the skin of psoriatic patients and cultured human keratinocytes. We then investigated activation of mitogen-activated protein kinase as an upstream signal regulator of Egr-1 expression. IL-17A-induced Egr-1 expression was suppressed by ERK inhibitor. In addition, IL-17A induced psoriasin expression in cultured keratinocytes and the skin of IL-17A intradermally injected mouse. IL-17A-mediated psoriasin upregulation was reduced after treatment of small interfering RNAs against Egr-1. Furthermore, the results of chromatin immunoprecipitation assays demonstrated that Egr-1 directly binds the psoriasin promoter. Our findings present a novel signalling mechanism by which IL-17A can induce the Egr-1-dependent psoriasin expression via the ERK pathway in human keratinocytes. This study suggests that Egr-1 may be a novel and important modulator in IL-17A-mediated immune response in psoriasis.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Interleucina-17/metabolismo , Psoriasis/etiología , Proteínas S100/genética , Animales , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/antagonistas & inhibidores , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Queratinocitos/inmunología , Queratinocitos/metabolismo , Queratinocitos/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos BALB C , Psoriasis/inmunología , Psoriasis/metabolismo , Proteína A7 de Unión a Calcio de la Familia S100 , Regulación hacia Arriba
20.
Stem Cells ; 32(12): 3219-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25132403

RESUMEN

SOX2 is crucial for the maintenance of the self-renewal capacity and multipotency of mesenchymal stem cells (MSCs); however, the mechanism by which SOX2 is regulated remains unclear. Here, we report that RNA interference of sirtuin 1 (SIRT1) in human bone marrow (BM)-derived MSCs leads to a decrease of SOX2 protein, resulting in the deterioration of the self-renewal and differentiation capacities of BM-MSCs. Using immunoprecipitation, we demonstrated direct binding between SIRT1 and SOX2 in HeLa cells overexpressing SOX2. We further discovered that the RNA interference of SIRT1 induces the acetylation, nuclear export, and ubiquitination of SOX2, leading to proteasomal degradation in BM-MSCs. SOX2 suppression by trichostatin A (TSA), a known histone deacetylase inhibitor, was reverted by treatment with resveratrol (0.1 and 1 µM), a known activator of SIRT1 in BM-MSCs. Furthermore, 0.1 and 1 µM resveratrol reduced TSA-mediated acetylation and ubiquitination of SOX2 in BM-MSCs. SIRT1 activation by resveratrol enhanced the colony-forming ability and differentiation potential to osteogenic and adipogenic lineages in a dose-dependent manner. However, the enhancement of self-renewal and multipotency by resveratrol was significantly decreased to basal levels by RNA interference of SOX2. These results strongly suggest that the SIRT1-SOX2 axis plays an important role in maintaining the self-renewal capability and multipotency of BM-MSCs. In conclusion, our findings provide evidence for positive SOX2 regulation by post-translational modification in BM-MSCs through the inhibition of nuclear export and subsequent ubiquitination, and demonstrate that SIRT1-mediated deacetylation contributes to maintaining SOX2 protein in the nucleus.


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Autorrenovación de las Células , Células Madre Mesenquimatosas/citología , Factores de Transcripción SOXB1/metabolismo , Sirtuina 1/metabolismo , Adulto , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Proliferación Celular/fisiología , Humanos , Células Madre Mesenquimatosas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Interferencia de ARN/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA