Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Chemistry ; : e202401644, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869378

RESUMEN

A series of monometallic Ni-, Co- and Zn-MOFs and bimetallic NiCo-, NiZn- and CoZn-MOFs M2(BDC)2DABCO and (M,M')2(BDC)2DABCO, respectively, with the same pillar and layer linkers 4-diazabicyclo[2.2.2]octane (DABCO) and benzene-1,4-dicarboxylate (BDC) were prepared through a fast microwave-assisted thermal conversion synthesis method within only 12 min. In the bimetallic MOFs the ratio M:M' was 4:1. The mono- and bimetallic MOFs were selected to systematically explore the catalytic-activity of their derived metal oxide/hydroxides for the oxygen evolution reaction (OER). The NiCoMOF exhibits superior catalytic activity for the OER with the lowest overpotentials of 301 mV and Tafel slopes of 42 mV dec-1 on a glassy carbon electrode in 1 mol L-1 KOH electrolyte at a current density of 10 mA cm-2. In addition, NiCoMOF was in situ grown in just 25 min by the MW synthesis on the surface of nickel foam (NF) where overpotentials of 313 and 328 mV at current densities of 50 and 300 mA cm-2, respectively, were delivered and superior long-term stability for practical OER application. The low Tafel slope of 27 mV dec-1, as well as a low reaction resistance from electrochemical impedance spectroscopy measurement (Rfar = 2 Ω), confirm the excellent OER performance of this NiCoMOF/NF composite.

2.
Pharmacol Rep ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739359

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most difficult to treat tumors. The Src (sarcoma) inhibitor dasatinib (DASA) has shown promising efficacy in preclinical studies of PDAC. However, clinical confirmation could not be achieved. Overall, our aim was to deliver arguments for the possible reinitiating clinical testing of this compound in a biomarker-stratifying therapy trial for PDAC patients. We tested if the nanofunctionalization of DASA can increase the drug efficacy and whether certain Src members can function as clinical predictive biomarkers. METHODS: Methods include manufacturing of poly(vinyl alcohol) stabilized gold nanoparticles and their drug loading, dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Zeta potential measurement, sterile human cell culture, cell growth quantification, accessing and evaluating transcriptome and clinical data from molecular tumor dataset TCGA, as well as various statistical analyses. RESULTS: We generated homo-dispersed nanofunctionalized DASA as an AuNP@PVA-DASA conjugate. The composite did not enhance the anti-growth effect of DASA on PDAC cell lines. The cell model with high LYN expression showed the strongest response to the therapy. We confirm deregulated Src kinetome activity as a prevalent feature of PDAC by revealing mRNA levels associated with higher malignancy grade of tumors. BLK (B lymphocyte kinase) expression predicts shorter overall survival of diabetic PDAC patients. CONCLUSIONS: Nanofunctionalization of DASA needs further improvement to overcome the therapy resistance of PDAC. LYN mRNA is augmented in tumors with higher malignancy and can serve as a predictive biomarker for the therapy resistance of PDAC cells against DASA. Studying the biological roles of BLK might help to identify underlying molecular mechanisms associated with PDAC in diabetic patients.

3.
J Med Chem ; 67(10): 7891-7910, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38451016

RESUMEN

A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.


Asunto(s)
Antineoplásicos , Caenorhabditis elegans , Complejos de Coordinación , Renio , Animales , Caenorhabditis elegans/efectos de los fármacos , Renio/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Nanomedicina Teranóstica , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
4.
Dalton Trans ; 53(11): 4937-4951, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38270136

RESUMEN

A newly synthesized series of bimetallic CPM-37(Ni,Fe) metal-organic frameworks with different iron content (Ni/Fe ≈ 2, 1, 0.5, named CPM-37(Ni2Fe), CPM-37(NiFe) and CPM-37(NiFe2)) demonstrated high N2-based specific SBET surface areas of 2039, 1955, and 2378 m2 g-1 for CPM-37(Ni2Fe), CPM-37(NiFe), and CPM-37(NiFe2), having much higher values compared to the monometallic CPM-37(Ni) and CPM-37(Fe) with 87 and 368 m2 g-1 only. It is rationalized that the mixed-metal nature of the materials increases the structural robustness due to the better charge balance at the coordination bonded cluster, which opens interesting application-oriented possibilities for mixed-metal CPM-37 and other less-stable MOFs. In this work, the CPM-37-derived α,ß-Ni(OH)2, γ-NiO(OH), and, plausibly, γ-FeO(OH) phases obtained via decomposition in the alkaline medium demonstrated a potent electrocatalytic activity in the oxygen evolution reaction (OER). The ratio Ni : Fe ≈ 2 from CPM-37(Ni2Fe) showed the best OER activity with a small overpotential of 290 mV at 50 mA cm-2, low Tafel slope of 39 mV dec-1, and more stable OER performance compared to RuO2 after 20 h chronopotentiometry at 50 mA cm-2.

5.
ACS Appl Mater Interfaces ; 16(2): 2509-2521, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170818

RESUMEN

As the excessive presence of heavy metals in the environment significantly affects human health, it becomes necessary to develop efficient, selective, and sensitive methods for their detection. In this study, a novel electrochemical sensor for the detection of Pb2+ ions is described. The proposed sensor is based on a glassy carbon electrode (GCE) modified by a thin film of histidine-grafted metal-organic framework (MOF-808-His). The MOF-808 was obtained solvothermally, and then postsynthetically modified by substituting the coordinated acetate with histidinate. By electrochemistry, the MOF-808-His-modified GCE demonstrated high charge selectivity, while electrochemical impedance spectroscopy (EIS) and kinetic studies gave a lower charge transfer resistance (4196 Ω) and a better standard heterogeneous electron transfer rate constant (1.80 × 10-5 cm s-1) on MOF-808-modified GCE. These results indicated a swift and direct electron transfer rate from [Fe(CN)6]3-/4- to the electrode surface. Using square wave anodic stripping voltammetry (SWASV), the rapid and highly sensitive determination of Pb2+ was achieved on MOF-808-His-modified GCE. By optimizing the accumulation-detection parameters including pH of the detection medium, deposition time and potential, and concentration, a remarkable limit of detection (LoD, based on a signal-to-noise ratio of 3) of (1.12 × 10-10 ± 0.10 × 10-10) mol L-1 was obtained, with a sensitivity of (9.6 ± 0.1) µA L µmol-1. After interference and stability studies, the MOF-808-His-modified GCE was applied to the detection of Pb2+ in a tap water sample with a concentration of 10 µmol L-1 Pb2+.

6.
Adv Mater ; 36(12): e2211302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36897806

RESUMEN

The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO4(OH)2 octahedra. Specifically, [Al(OH)(muc)] or MIP-211, is made of trans, trans-muconate linkers, and cis-µ-OH-connected corner-sharing AlO4(OH)2 octahedra giving a 3D network with sinusoidal channels. The polymorph MIL-53-muc has a tiny change in the chain structure that results in a shift of the step position of the water isotherm from P/P0 ≈ 0.5 in MIL-53-muc, to P/P0 ≈ 0.3 in MIP-211. Solid-state NMR and Grand Canonical Monte Carlo reveal that the adsorption occurs initially between two hydroxyl groups of the chains, favored by the cis-positioning in MIP-211, resulting in a more hydrophilic behavior. Finally, theoretical evaluations show that MIP-211 would allow achieving a coefficient of performance for cooling (COPc) of 0.63 with an ultralow driving temperature of 60 °C, outperforming benchmark sorbents for small temperature lifts. Combined with its high stability, easy regeneration, huge water uptake capacity, green synthesis, MIP-211 is among the best adsorbents for adsorption-driven air conditioning and water harvesting from the air.

7.
Angew Chem Int Ed Engl ; 63(4): e202317435, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38059667

RESUMEN

Nitrous oxide (N2 O), as the third largest greenhouse gas in the world, also has great applications in daily life and industrial production, like anesthetic, foaming agent, combustion supporting agent, N or O atomic donor. The capture of N2 O in adipic acid tail gas is of great significance but remains challenging due to the similarity with CO2 in molecular size and physical properties. Herein, the influence of cation types on CO2 -N2 O separation in zeolite was studied comprehensively. In particular, the inverse adsorption of CO2 -N2 O was achieved by AgZK-5, which preferentially adsorbs N2 O over CO2 , making it capable of trapping N2 O from an N2 O/CO2 mixture. AgZK-5 shows a recorded N2 O/CO2 selectivity of 2.2, and the breakthrough experiment indicates excellent performance for N2 O/CO2 separation. The density functional theory (DFT) calculation shows that Ag+ has stronger adsorption energy with N2 O, and the kinetics of N2 O is slightly faster than that of CO2 on AgZK-5.

8.
Chemistry ; 30(1): e202302765, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37713258

RESUMEN

Two new isostructural semiconducting metal-phosphonate frameworks are reported. Co2 [1,4-NDPA] and Zn2 [1,4-NDPA] (1,4-NDPA4- is 1,4-naphthalenediphosphonate) have optical bandgaps of 1.7 eV and 2.5 eV, respectively. The electrocatalyst derived from Co2 [1,4-NPDA] as a precatalyst generated a low overpotential of 374 mV in the oxygen evolution reaction (OER) with a Tafel slope of 43 mV dec-1 at a current density of 10 mA cm-2 in alkaline electrolyte (1 mol L-1 KOH), which is indicative of remarkably superior reaction kinetics. Benchmarking of the OER of Co2 [1,4-NPDA] material as a precatalyst coupled with nickel foam (NF) showed exceptional long-term stability at a current density of 50 mA cm-2 for water splitting compared to the state-of-the-art Pt/C/RuO2 @NF after 30 h in 1 mol L-1 KOH. In order to further understand the OER mechanism, the transformation of Co2 [1,4-NPDA] into its electrocatalytically active species was investigated.

9.
Polymers (Basel) ; 15(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571180

RESUMEN

Seven new coordination networks, [Fe(tbbt)3](BF4)2 (1), [Co(tbbt)3](BF4)2 (2), [Fe(tbbt)3](ClO4)2 (3), [Co(tbbt)3](ClO4)2 (4), [Fe(NCS)2(tbbt)2] (5), [Co(NCS)2(tbbt)2] (6), and [Fe(H2O)2(tbbt)2]Br2·2H2O (7), were synthesized with the linker 1,1'-(trans-2-butene-1,4-diyl)bis-1,2,4-triazole (tbbt) and structurally investigated. The structure of complexes 1-4 is composed of three interpenetrating, symmetry-related 3D networks. Each individual 3D network forms a primitive, nearly cubic lattice (pcu) with BF4- or ClO4- anions present in the interstitial spaces. The structure of compounds 5 and 6 is composed of two-dimensional sql layers, which are parallel to each other in the AB stacking type. These layers are interpenetrated by one-dimensional chains, both having the same formula unit, [M(NCS)2(tbbt)2] (M = Fe, Co). The structure of compound 7 consists of parallel, two-dimensional sql layers in the ABCD stacking type. The interpenetration in 1-6 is not controlled by π-π-interactions between the triazole rings or C=C bonds, as could have been expected, but by (triazole)C-H⋯F4B, C-H⋯O4Cl, and C-H⋯SCN anion hydrogen bonds, which suggests a template effect of the respective non-coordinated or coordinated anion for the interpenetration. In 7, the (triazole)C-H⋯Br anion interactions are supplemented by O-H⋯O and O-H⋯Br hydrogen bonds involving the aqua ligand and crystal water molecules. It is evident that the coordinated and non-coordinated anions play an essential role in the formation of the networks and guide the interpenetration. All iron(II) coordination networks are colorless, off-white to yellow-orange, and have the metal ions in the high-spin state down to 77 K. Compound 5 stays in the high spin state even at temperatures down to 10 K.

10.
Nano Lett ; 23(16): 7371-7378, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37534973

RESUMEN

Hierarchical assembly of arc-like fractal nanostructures not only has its unique self-similarity feature for stability enhancement but also possesses the structural advantages of highly exposed surface-active sites for activity enhancement, remaining a great challenge for high-performance metallic nanocatalyst design. Herein, we report a facile strategy to synthesize a novel arc-like hierarchical fractal structure of PtPd bimetallic nanoparticles (h-PtPd) by using pyridinium-type ionic liquids as the structure-directing agent. Growth mechanisms of the arc-like nanostructured PtPd nanoparticles have been fully studied, and precise control of the particle sizes and pore sizes has been achieved. Due to the structural features, such as size control by self-similarity growth of subunits, structural stability by nanofusion of subunits, and increased numbers of exposed active atoms by the curved homoepitaxial growth, h-PtPd displays outstanding electrocatalytic activity toward oxygen reduction reaction and excellent stability during hydrothermal treatment and catalytic process.

11.
Environ Sci Pollut Res Int ; 30(44): 100095-100113, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37624498

RESUMEN

Contaminants of emerging concern (CECs), also known as micropollutants, have been recognized in recent years as substantial water pollutants because of the potential threats they pose to the environment and human health. This study was aimed at preparing biochar (BC) based on egusi seed shells (ESS) with well-developed porosity and excellent adsorption capacity towards CECs including ibuprofen (IBP), caffeine (CAF), and bisphenol A (BPA). BC samples were prepared by pyrolysis at different temperatures (400 to 800 °C) and were characterized using nitrogen sorption, FTIR, powder X-ray diffraction (PXRD), SEM/EDS, elemental analysis, and thermal analysis. The nitrogen sorption and SEM results showed that the textural properties were more prominent as the pyrolysis temperature increased. The BC sample obtained at 800 °C which exhibited the largest specific surface area (688 m2/g) and the highest pore volume (0.320 cm3/g) was selected for the adsorption study of CECs. The kinetic study shows that the adsorption equilibrium of CAF and BPA was faster than that of IBP. The pseudo-first- and pseudo-second-order kinetic models best fitted the adsorption data. The Langmuir maximum monolayer adsorption capacities of biochar were found to be ~ 180, 121, and 73 mg/g respectively for IBP, CAF, and BPA. The thermodynamic study shows that the adsorption process was spontaneous and endothermic for the three CECs. The results of the adsorption and the analysis of BC after adsorption showed that hydrogen bonding, van der Waals, π-π, n-π interactions, and pore filling were involved in the adsorption mechanism. The prepared biochar BC from ESS displayed a large surface area and good morphology and significantly promotes adsorption of CECs and good efficiency on synthetic effluent. Finally, it offers a low-cost and cleaner production method.


Asunto(s)
Cafeína , Contaminantes Químicos del Agua , Humanos , Ibuprofeno , Adsorción , Carbón Orgánico , Termodinámica , Cinética , Nitrógeno
12.
Molecules ; 28(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513359

RESUMEN

Epinephrine (EP, also called adrenaline) is a compound belonging to the catecholamine neurotransmitter family. It can cause neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This work describes an amperometric sensor for the electroanalytical detection of EP by using an inkjet-printed graphene electrode (IPGE) that has been chemically modified by a thin layer of a laponite (La) clay mineral. The ion exchange properties and permeability of the chemically modified electrode (denoted La/IPGE) were evaluated using multi-sweep cyclic voltammetry, while its charge transfer resistance was determined by electrochemical impedance spectroscopy. The results showed that La/IPGE exhibited higher sensitivity to EP compared to the bare IPGE. The developed sensor was directly applied for the determination of EP in aqueous solution using differential pulse voltammetry. Under optimized conditions, a linear calibration graph was obtained in the concentration range between 0.8 µM and 10 µM. The anodic peak current of EP was directly proportional to its concentration, leading to detection limits of 0.34 µM and 0.26 µM with bare IPGE and La/IPGE, respectively. The sensor was successfully applied for the determination of EP in pharmaceutical preparations. Recovery rates and the effects of interfering species on the detection of EP were evaluated to highlight the selectivity of the elaborated sensor.


Asunto(s)
Grafito , Grafito/química , Carbono/química , Arcilla , Técnicas Electroquímicas/métodos , Epinefrina/química , Electrodos , Preparaciones Farmacéuticas
13.
Small ; 19(47): e2304057, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491772

RESUMEN

Herein, we report the design and synthesis of a layered redox-active, antiferromagnetic metal organic semiconductor crystals with the chemical formula [Cu(H2 O)2 V(µ-O)(PPA)2 ] (where PPA is phenylphosphonate). The crystal structure of [Cu(H2 O)2 V(µ-O)(PPA)2 ] shows that the metal phosphonate layers are separated by phenyl groups of the phenyl phosphonate linker. Tauc plotting of diffuse reflectance spectra indicates that [Cu(H2 O)2 V(µ-O)(PPA)2 ] has an indirect band gap of 2.19 eV. Photoluminescence (PL) spectra indicate a complex landscape of energy states with PL peaks at 1.8 and 2.2 eV. [Cu(H2 O)2 V(µ-O)(PPA)2 ] has estimated hybrid ionic and electronic conductivity values between 0.13 and 0.6 S m-1 . Temperature-dependent magnetization measurements show that [Cu(H2 O)2 V(µ-O)(PPA)2 ] exhibits short range antiferromagnetic order between Cu(II) and V(IV) ions. [Cu(H2 O)2 V(µ-O)(PPA)2 ] is also photoluminescent with photoluminescence quantum yield of 0.02%. [Cu(H2 O)2 V(µ-O)(PPA)2 ] shows high electrochemical, and thermal stability.

14.
iScience ; 26(8): 107286, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520721

RESUMEN

Certain types of face masks are highly efficient in protecting humans from bacterial and viral pathogens, and growing concerns with high safety, low cost, and wide market suitability have accelerated the replacement of reusable face masks with disposable ones during the last decades. However, wearing these masks creates countless problems associated with personnel comfort as well as more significant issues related to the cost of fabrication, the generation of medical waste, and environmental contaminants. In this work, we present a facile spray-pressing technique for the production of P-masks with a potential scale-up prospect by adding a graphene layer on one side of meltblown fabric and a functional layer on the other side. In principle, this technique could be easily integrated into the present automatic mask production process and the masks have self-cleaning and/or self-sterilizing properties when it is exposed to solar or simulated solar irradiation.

15.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298940

RESUMEN

Metal-organic frameworks (MOFs) have been investigated with regard to the oxygen evolution reaction (OER) due to their structure diversity, high specific surface area, adjustable pore size, and abundant active sites. However, the poor conductivity of most MOFs restricts this application. Herein, through a facile one-step solvothermal method, the Ni-based pillared metal-organic framework [Ni2(BDC)2DABCO] (BDC = 1,4-benzenedicarboxylate, DABCO = 1,4-diazabicyclo[2.2.2]octane), its bimetallic nickel-iron form [Ni(Fe)(BDC)2DABCO], and their modified Ketjenblack (mKB) composites were synthesized and tested toward OER in an alkaline medium (KOH 1 mol L-1). A synergistic effect of the bimetallic nickel-iron MOF and the conductive mKB additive enhanced the catalytic activity of the MOF/mKB composites. All MOF/mKB composite samples (7, 14, 22, and 34 wt.% mKB) indicated much higher OER performances than the MOFs and mKB alone. The Ni-MOF/mKB14 composite (14 wt.% of mKB) demonstrated an overpotential of 294 mV at a current density of 10 mA cm-2 and a Tafel slope of 32 mV dec-1, which is comparable with commercial RuO2, commonly used as a benchmark material for OER. The catalytic performance of Ni(Fe)MOF/mKB14 (0.57 wt.% Fe) was further improved to an overpotential of 279 mV at a current density of 10 mA cm-2. The low Tafel slope of 25 mV dec-1 as well as a low reaction resistance due to the electrochemical impedance spectroscopy (EIS) measurement confirmed the excellent OER performance of the Ni(Fe)MOF/mKB14 composite. For practical applications, the Ni(Fe)MOF/mKB14 electrocatalyst was impregnated into commercial nickel foam (NF), where overpotentials of 247 and 291 mV at current densities of 10 and 50 mA cm-2, respectively, were realized. The activity was maintained for 30 h at the applied current density of 50 mA cm-2. More importantly, this work adds to the fundamental understanding of the in situ transformation of Ni(Fe)DMOF into OER-active α/ß-Ni(OH)2, ß/γ-NiOOH, and FeOOH with residual porosity inherited from the MOF structure, as seen by powder X-ray diffractometry and N2 sorption analysis. Benefitting from the porosity structure of the MOF precursor, the nickel-iron catalysts outperformed the solely Ni-based catalysts due to their synergistic effects and exhibited superior catalytic activity and long-term stability in OER. In addition, by introducing mKB as a conductive carbon additive in the MOF structure, a homogeneous conductive network was constructed to improve the electronic conductivity of the MOF/mKB composites. The electrocatalytic system consisting of earth-abundant Ni and Fe metals only is attractive for the development of efficient, practical, and economical energy conversion materials for efficient OER activity.


Asunto(s)
Estructuras Metalorgánicas , Níquel , Benchmarking , Hierro , Oxígeno
16.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985688

RESUMEN

Gas-phase infiltration of the carbonylchloridogold(I), Au(CO)Cl precursor into the pores of HKUST-1 ([Cu3(BTC)2(H2O)2], Cu-BTC) SURMOFs (surface-mounted metal-organic frameworks; BTC = benzene-1,3,5-tricarboxylate) leads to Au(CO)Cl decomposition within the MOF through hydrolysis with the aqua ligands on Cu. Small Aux clusters with an average atom number of x ≈ 5 are formed in the medium-sized pores of the HKUST-1 matrix. These gold nanoclusters are homogeneously distributed and crystallographically ordered, which was supported by simulations of the powder X-ray diffractometric characterization. Aux@HKUST-1 was further characterized by scanning electron microscopy (SEM) and infrared reflection absorption (IRRA) as well as Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES).

17.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985849

RESUMEN

The flavin derivatives 10-methyl-isoalloxazine (MIA) and 6-fluoro-10-methyl-isoalloxazine (6F-MIA) were incorporated in two alternative metal-organic frameworks, (MOFs) MIL-53(Al) and MOF-5. We used a post-synthetic, diffusion-based incorporation into microcrystalline MIL-53 powders with one-dimensional (1D) pores and an in-situ approach during the synthesis of MOF-5 with its 3D channel network. The maximum amount of flavin dye incorporation is 3.9 wt% for MIA@MIL-53(Al) and 1.5 wt% for 6F-MIA@MIL-53(Al), 0.85 wt% for MIA@MOF-5 and 5.2 wt% for 6F-MIA@MOF-5. For the high incorporation yields the probability to have more than one dye molecule in a pore volume is significant. As compared to the flavins in solution, the fluorescence spectrum of these flavin@MOF composites is broadened at the bathocromic side especially for MIA. Time-resolved spectroscopy showed that multi-exponential fluorescence lifetimes were needed to describe the decays. The fluorescence-weighted lifetime of flavin@MOF of 4 ± 1 ns also corresponds to those in solution but is significantly prolonged compared to the solid flavin dyes with less than 1 ns, thereby confirming the concept of "solid solutions" for dye@MOF composites. The fluorescence quantum yield (ΦF) of the flavin@MOF composites is about half of the solution but is significantly higher compared to the solid flavin dyes. Both the fluorescence lifetime and quantum yield of flavin@MOF decrease with the flavin loading in MIL-53 due to the formation of various J-aggregates. Theoretical calculations using plane-wave and QM/MM methods are in good correspondence with the experimental results and explain the electronic structures as well as the photophysical properties of crystalline MIA and the flavin@MOF composites. In the solid flavins, π-stacking interactions of the molecules lead to a charge transfer state with low oscillator strength resulting in aggregation-caused quenching (ACQ) with low lifetimes and quantum yields. In the MOF pores, single flavin molecules represent a major population and the computed MIA@MOF structures do not find π-stacking interactions with the pore walls but only weak van-der-Waals contacts which reasons the enhanced fluorescence lifetime and quantum yield of the flavins in the composites compared to their neat solid state. To analyze the orientation of flavins in MOFs, we measured fluorescence anisotropy images of single flavin@MOF-5 crystals and a static ensemble flavin@MIL53 microcrystals, respectively. Based on image information, anisotropy distributions and overall curve of the time-resolved anisotropy curves combined with theoretical calculations, we can prove that all fluorescent flavins species have a defined and rather homogeneous orientation in the MOF framework. In MIL-53, the transition dipole moments of flavins are orientated along the 1D channel axis, whereas in MOF-5 we resolved an average orientation that is tilted with respect to the cubic crystal lattice. Notably, the more hydrophobic 6F-MIA exhibits a higher degree order than MIA. The flexible MOF MIL-53(Al) was optimized essentially to the experimental large-pore form in the guest-free state with QuantumEspresso (QE) and with MIA molecules in the pores the structure contracted to close to the experimental narrow-pore form which was also confirmed by PXRD. In summary, the incorporation of flavins in MOFs yields solid-state materials with enhanced rigidity, stabilized conformation, defined orientation and reduced aggregations of the flavins, leading to increased fluorescence lifetime and quantum yield as controllable photo-luminescent and photo-physical properties.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36786318

RESUMEN

Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.

19.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615598

RESUMEN

Tunable aryl alkyl ionic liquids (TAAILs) are ionic liquids (ILs) with a 1-aryl-3-alkylimidazolium cation having differently substituted aryl groups. Herein, nine TAAILs with the bis(trifluoromethylsulfonyl)imide anion are utilized in combination with and without ethylene glycol (EG) as reaction media for the rapid microwave synthesis of platinum nanoparticles (Pt-NPs). TAAILs allow the synthesis of small NPs and are efficient solvents for microwave absorption. Transmission electron microscopy (TEM) shows that small primary NPs with sizes of 2 nm to 5 nm are obtained in TAAILs and EG/TAAIL mixtures. The Pt-NPs feature excellent activity as electrocatalysts in the hydrogen evolution reaction (HER) under acidic conditions, with an overpotential at a current density of 10 mA cm-2 as low as 32 mV vs the reversible hydrogen electrode (RHE), which is significantly lower than the standard Pt/C 20% with 42 mV. Pt-NPs obtained in TAAILs also achieved quantitative conversion in the hydrosilylation reaction of phenylacetylene with triethylsilane after just 5 min at 200 °C.

20.
Dalton Trans ; 52(4): 977-989, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36601863

RESUMEN

Single crystals of the new metal-organic framework (MOF) In-adc (HHUD-4) were obtained through the reaction of linear acetylenedicarboxylic acid (H2adc) with In(NO3)3·xH2O as a racemic conglomerate in the chiral tetragonal space groups P4322 and P4122. Fundamentally different from other MOFs with linear linkers and trans-µ-OH-connected infinite {MO6} secondary building units as in the MIL-53-type, the linear adc2- linker leads to the formation of cis-µ-OH connected {InO6} polyhedra, which have otherwise only been found before for V-shaped ligands, as in CAU-10-H. A far-reaching implication of this finding is the possibility that trans-µ-OH/straight MIL-53-type MOFs will have polymorphs of CAU-10-H cis-µ-OH/helical topology and vice versa. HHUD-4 is a microporous MOF with a BET surface area of up to 940 m2 g-1 and a micropore volume of up to 0.39 cm3 g-1. Additionally, HHUD-4 features good adsorption uptakes of 3.77 mmol g-1 for CO2 and 1.25 mmol g-1 for CH4 at 273 K and 1 bar, respectively, and a high isosteric heat of adsorption of 11.4 kJ mol-1 for H2 with a maximum uptake of 6.36 mmol g-1 at 77 K and 1 bar. Vapor sorption experiments for water and volatile organic compounds (VOCs) such as benzene, cyclohexane and n-hexane yielded uptake values of 135, 269, 116 and 205 mg g-1, respectively, at 293 K. While HHUD-4 showed unremarkable results for water uptake and low stability for water, it exhibited good stability with steep VOC uptake steps at low relative pressures and a high selectivity of 17 for benzene/cyclohexane mixtures.


Asunto(s)
Estructuras Metalorgánicas , Indio , Benceno/química , Gases , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA