Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38971385

RESUMEN

INTRODUCTION: Local failure rates after treatment for locally advanced non-small-cell lung cancer (NSCLC) remain high. Efforts to improve local control with uniform dose-escalation or dose-escalation to mid-treatment PET-avid residual disease have been limited by heightened toxicity. This trial aimed to refine response-based adaptive radiation (RT) and minimize toxicity by incorporating FDG-PET and V/Q SPECT imaging mid-treatment. METHODS: 47 patients with Stage IIA-III unresectable NSCLC were prospectively enrolled in this single-institution trial (NCT02492867). Patients received concurrent chemoradiation with personalized response-based adaptive RT over 30 fractions incorporating V/Q SPECT and FDG-PET. The first 21 fractions (46.2Gy at 2.2 Gy/fraction) were delivered to the tumor while minimizing dose to SPECT-defined functional lung. The plan was then adapted for the final 9 fractions (2.2-3.8Gy/fraction) up to a total of 80.4Gy, based on mid-treatment FDG-PET tumor response to escalate dose to residual tumor while minimizing dose to SPECT-defined functional lung. Non-progressing patients received consolidative carboplatin/paclitaxel or durvalumab. The primary endpoint of the study was ≥ grade 2 lung and esophageal toxicities. Secondary endpoints included time to local progression, tumor response, and overall survival. RESULTS: At one year post-treatment, the rates of grade 2 and grade 3 pneumonitis were 21.3% and 2.1%, respectively, with no difference in pneumonitis rates among patients who received and did not receive adjuvant durvalumab (p=0.74). While there were no grade 3 esophageal-related toxicities, 66.0% of patients experienced grade 2 esophagitis. 1- and 2-year local control rates were 94.5% (95% CI, 87.4% - 100%) and 87.5% (95% CI, 76.7% - 100%), respectively. Overall survival was 82.8% (95% CI, 72.6% -94.4%) at 1 year and 62.3% (95% CI, 49.6%-78.3%) at 2 years. CONCLUSIONS: Response-based adaptive dose-escalation accounting for tumor change and normal tissue function during treatment provided excellent local control, comparable toxicity to standard chemoradiation, and did not increase toxicity with adjuvant immunotherapy.

2.
Pract Radiat Oncol ; 13(2): e200-e208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36526245

RESUMEN

PURPOSE: Locally advanced lung cancer (LALC) treatment planning is often complex due to challenging tradeoffs related to large targets near organs at risk, making the judgment of plan quality difficult. The purpose of this work was to update and maintain a multi-institutional knowledge-based planning (KBP) model developed by a statewide consortium of academic and community practices for use as a plan quality assurance (QA) tool. METHODS AND MATERIALS: Sixty LALC volumetric-modulated arc therapy plans from 2021 were collected from 24 institutions. Plan quality was scored, with high-quality clinical (HQC) plans selected to update a KBP model originally developed in 2017. The model was validated via automated KBP planning, with 20 cases excluded from the model. Differences in dose-volume histogram metrics in the clinical plans, 2017 KBP model plans, and 2022 KBP model plans were compared. Twenty recent clinical cases not meeting consortium quality metrics were replanned with the 2022 model to investigate potential plan quality improvements. RESULTS: Forty-seven plans were included in the final KBP model. Compared with the clinical plans, the 2022 model validation plans improved 60%, 65%, and 65% of the lung V20Gy, mean heart dose, and spinal canal D0.03cc metrics, respectively. The 2022 model showed improvements from the 2017 model in hot spot management at the cost of greater lung doses. Of the 20 recent cases not meeting quality metrics, 40% of the KBP model-replanned cases resulted in acceptable plans, suggesting potential clinical plan improvements. CONCLUSIONS: A multi-institutional KBP model was updated using plans from a statewide consortium. Multidisciplinary plan review resulted in HQC model training plans and model validation resulted in acceptable quality plans. The model proved to be effective at identifying potential plan quality improvements. Work is ongoing to develop web-based training plan review tools and vendor-agnostic platforms to provide the model as a QA tool statewide.


Asunto(s)
Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Radioterapia de Intensidad Modulada/métodos , Pulmón
3.
Med Phys ; 49(10): 6279-6292, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35994026

RESUMEN

PURPOSE: Current radiation therapy (RT) treatment planning relies mainly on pre-defined dose-based objectives and constraints to develop plans that aim to control disease while limiting damage to normal tissues during treatment. These objectives and constraints are generally population-based, in that they are developed from the aggregate response of a broad patient population to radiation. However, correlations of new biologic markers and patient-specific factors to treatment efficacy and toxicity provide the opportunity to further stratify patient populations and develop a more individualized approach to RT planning. We introduce a novel intensity-modulated radiation therapy (IMRT) optimization strategy that directly incorporates patient-specific dose response models into the planning process. In this strategy, we integrate the concept of utility-based planning where the optimization objective is to maximize the predicted value of overall treatment utility, defined by the probability of efficacy (e.g., local control) minus the weighted sum of toxicity probabilities. To demonstrate the feasibility of the approach, we apply the strategy to treatment planning for non-small cell lung cancer (NSCLC) patients. METHODS AND MATERIALS: We developed a prioritized approach to patient-specific IMRT planning. Using a commercial treatment planning system (TPS), we calculate dose based on an influence matrix of beamlet-dose contributions to regions-of-interest. Then, outside of the TPS, we hierarchically solve two optimization problems to generate optimal beamlet weights that can then be imported back to the TPS. The first optimization problem maximizes a patient's overall plan utility subject to typical clinical dose constraints. In this process, we facilitate direct optimization of efficacy and toxicity trade-off based on individualized dose-response models. After optimal utility is determined, we solve a secondary optimization problem that minimizes a conventional dose-based objective subject to the same clinical dose constraints as the first stage but with the addition of a constraint to maintain the optimal utility from the first optimization solution. We tested this method by retrospectively generating plans for five previously treated NSCLC patients and comparing the prioritized utility plans to conventional plans optimized with only dose metric objectives. To define a plan utility function for each patient, we utilized previously published correlations of dose to local control and grade 3-5 toxicities that include patient age, stage, microRNA levels, and cytokine levels, among other clinical factors. RESULTS: The proposed optimization approach successfully generated RT plans for five NSCLC patients that improve overall plan utility based on personalized efficacy and toxicity models while accounting for clinical dose constraints. Prioritized utility plans demonstrated the largest average improvement in local control (16.6%) when compared to plans generated with conventional planning objectives. However, for some patients, the utility-based plans resulted in similar local control estimates with decreased estimated toxicity. CONCLUSION: The proposed optimization approach, where the maximization of a patient's RT plan utility is prioritized over the minimization of standardized dose metrics, has the potential to improve treatment outcomes by directly accounting for variability within a patient population. The implementation of the utility-based objective function offers an intuitive, humanized approach to biological optimization in which planning trade-offs are explicitly optimized.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Radioterapia de Intensidad Modulada , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Citocinas , Humanos , Neoplasias Pulmonares/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos
4.
Adv Radiat Oncol ; 1(4): 281-289, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28740898

RESUMEN

PURPOSE: Limits on mean lung dose (MLD) allow for individualization of radiation doses at safe levels for patients with lung tumors. However, MLD does not account for individual differences in the extent or spatial distribution of pulmonary dysfunction among patients, which leads to toxicity variability at the same MLD. We investigated dose rearrangement to minimize the radiation dose to the functional lung as assessed by perfusion single photon emission computed tomography (SPECT) and maximize the target coverage to maintain conventional normal tissue limits. METHODS AND MATERIALS: Retrospective plans were optimized for 15 patients with locally advanced non-small cell lung cancer who were enrolled in a prospective imaging trial. A staged, priority-based optimization system was used. The baseline priorities were to meet physical MLD and other dose constraints for organs at risk, and to maximize the target generalized equivalent uniform dose (gEUD). To determine the benefit of dose rearrangement with perfusion SPECT, plans were reoptimized to minimize the generalized equivalent uniform functional dose (gEUfD) to the lung as the subsequent priority. RESULTS: When only physical MLD is minimized, lung gEUfD was 12.6 ± 4.9 Gy (6.3-21.7 Gy). When the dose is rearranged to minimize gEUfD directly in the optimization objective function, 10 of 15 cases showed a decrease in lung gEUfD of >20% (lung gEUfD mean 9.9 ± 4.3 Gy, range 2.1-16.2 Gy) while maintaining equivalent planning target volume coverage. Although all dose-limiting constraints remained unviolated, the dose rearrangement resulted in slight gEUD increases to the cord (5.4 ± 3.9 Gy), esophagus (3.0 ± 3.7 Gy), and heart (2.3 ± 2.6 Gy). CONCLUSIONS: Priority-driven optimization in conjunction with perfusion SPECT permits image guided spatial dose redistribution within the lung and allows for a reduced dose to the functional lung without compromising target coverage or exceeding conventional limits for organs at risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA