Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Elife ; 132024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813868

RESUMEN

Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.


Asunto(s)
Impresión Genómica , Animales , Femenino , Embarazo , Ratones , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Desarrollo Fetal/genética , Placenta/metabolismo , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Sistema de Transporte de Aminoácidos A
2.
BMC Biol ; 21(1): 281, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053127

RESUMEN

BACKGROUND: Disrupted germline differentiation or compromised testis development can lead to subfertility or infertility and are strongly associated with testis cancer in humans. In mice, SRY and SOX9 induce expression of Fgf9, which promotes Sertoli cell differentiation and testis development. FGF9 is also thought to promote male germline differentiation but the mechanism is unknown. FGFs typically signal through mitogen-activated protein kinases (MAPKs) to phosphorylate ERK1/2 (pERK1/2). We explored whether FGF9 regulates male germline development through MAPK by inhibiting either FGF or MEK1/2 signalling in the foetal testis immediately after gonadal sex determination and testis cord formation, but prior to male germline commitment. RESULTS: pERK1/2 was detected in Sertoli cells and inhibition of MEK1/2 reduced Sertoli cell proliferation and organisation and resulted in some germ cells localised outside of the testis cords. While pERK1/2 was not detected in germ cells, inhibition of MEK1/2 after somatic sex determination profoundly disrupted germ cell mitotic arrest, dysregulated a broad range of male germline development genes and prevented the upregulation of key male germline markers, DPPA4 and DNMT3L. In contrast, while FGF inhibition reduced Sertoli cell proliferation, expression of male germline markers was unaffected and germ cells entered mitotic arrest normally. While male germline differentiation was not disrupted by FGF inhibition, a range of stem cell and cancer-associated genes were commonly altered after 24 h of FGF or MEK1/2 inhibition, including genes involved in the maintenance of germline stem cells, Nodal signalling, proliferation, and germline cancer. CONCLUSIONS: Together, these data demonstrate a novel role for MEK1/2 signalling during testis development that is essential for male germline differentiation, but indicate a more limited role for FGF signalling. Our data indicate that additional ligands are likely to act through MEK1/2 to promote male germline differentiation and highlight a need for further mechanistic understanding of male germline development.


Asunto(s)
Neoplasias , Testículo , Masculino , Ratones , Humanos , Animales , Testículo/metabolismo , Factor 2 de Crecimiento de Fibroblastos , Células Germinativas , Diferenciación Celular , Neoplasias/metabolismo
3.
Clin Epigenetics ; 14(1): 183, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36544159

RESUMEN

BACKGROUND: Non-genetic disease inheritance and offspring phenotype are substantially influenced by germline epigenetic programming, including genomic imprinting. Loss of Polycomb Repressive Complex 2 (PRC2) function in oocytes causes non-genetically inherited effects on offspring, including embryonic growth restriction followed by post-natal offspring overgrowth. While PRC2-dependent non-canonical imprinting is likely to contribute, less is known about germline epigenetic programming of non-imprinted genes during oocyte growth. In addition, de novo germline mutations in genes encoding PRC2 lead to overgrowth syndromes in human patients, but the extent to which PRC2 activity is conserved in human oocytes is poorly understood. RESULTS: In this study, we identify a discrete period of early oocyte growth during which PRC2 is expressed in mouse growing oocytes. Deletion of Eed during this window led to the de-repression of 343 genes. A high proportion of these were developmental regulators, and the vast majority were not imprinted genes. Many of the de-repressed genes were also marked by the PRC2-dependent epigenetic modification histone 3 lysine 27 trimethylation (H3K27me3) in primary-secondary mouse oocytes, at a time concurrent with PRC2 expression. In addition, we found H3K27me3 was also enriched on many of these genes by the germinal vesicle (GV) stage in human oocytes, strongly indicating that this PRC2 function is conserved in the human germline. However, while the 343 genes were de-repressed in mouse oocytes lacking EED, they were not de-repressed in pre-implantation embryos and lost H3K27me3 during pre-implantation development. This implies that H3K27me3 is a transient feature that represses a wide range of genes in oocytes. CONCLUSIONS: Together, these data indicate that EED has spatially and temporally distinct functions in the female germline to repress a wide range of developmentally important genes and that this activity is conserved in the mouse and human germlines.


Asunto(s)
Metilación de ADN , Histonas , Oocitos , Complejo Represivo Polycomb 2 , Animales , Ratones , Genes del Desarrollo , Histonas/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
4.
Reproduction ; 163(3): 167-182, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35084365

RESUMEN

Polycomb repressive complex 2 (PRC2) catalyses the repressive epigenetic modification of histone 3 lysine 27 tri-methylation (H3K27me3) and functions as a key epigenetic regulator during embryonic development. PRC2 is known to regulate the development of a range of tissues by transcriptional silencing of genes that control cell differentiation, but its roles in female germline and ovarian development remain unknown. Using a mouse model with hypomorphic embryonic ectoderm development (EED) function that reduced H3K27me3 in somatic and germ cells, we found that PRC2 was required for survival, with more than 95% of female animals dying before birth. Although surviving adult EED hypomorphic females appeared morphologically similar to controls and were fertile, Eedhypo/hypo adult ovaries were abnormal, with altered morphology characterised by abnormal follicles. Early Eedhypo/hypo and control fetal ovaries were morphologically similar, and germ cells entered meiosis normally. Immunofluorescent analyses of somatic and germline markers indicated that ovarian development in Eedhypo/hypo ovaries was similar to heterozygous and WT controls. However, TUNEL analyses revealed higher rates of apoptosis in the ovarian surface epithelium, and transcriptional analyses revealed changes in genes regulating epithelial and steroidogenic cell differentiation, possibly foreshadowing the defects observed in adult ovaries of hypomorphic females. While it was possible to analyse early-mid fetal ovarian development, postnatal stages were inaccessible due to the high level of lethality during late fetal stages. Despite this limitation, the data we were able to obtain reveal a novel role for EED in the ovary that is likely to alter ovarian development and ovarian function in adult animals.


Asunto(s)
Ovario , Complejo Represivo Polycomb 2 , Animales , Diferenciación Celular/genética , Femenino , Histonas/metabolismo , Metilación , Ratones , Ovario/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
5.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-30613387

RESUMEN

Epigenetic modifications, including DNA methylation and histone modifications, determine the way DNA is packaged within the nucleus and regulate cell-specific gene expression. The heritability of these modifications provides a memory of cell identity and function. Common dysregulation of epigenetic modifications in cancer has driven substantial interest in the development of epigenetic modifying drugs. Although these drugs have the potential to be highly beneficial for patients, they act systemically and may have "off-target" effects in other cells such as the patients' sperm or eggs. This review discusses the potential for epigenomic drugs to impact on the germline epigenome and subsequent offspring and aims to foster further examination into the possible effects of these drugs on gametes. Ultimately, the information gained by further research may improve the clinical guidelines for the use of such drugs in patients of reproductive age.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Epigenómica/métodos , Células Germinativas/efectos de los fármacos , Metilación de ADN , Código de Histonas , Humanos , Reproducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA