Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37692087

RESUMEN

Ras GTPases regulate many developmental and physiological processes and mutations in Ras are associated with numerous human cancers. Here, we report the function, levels, and localization of an N-terminal knock-in of mNeonGreen (mNG) into C. elegans LET-60 /Ras. mNG:: LET-60 interferes with some but not all LET-60 /Ras functions. mNG:: LET-60 is broadly present in tissues, found at different levels in cells, and concentrates in distinct subcellular compartments, including the nucleolus, nucleus, intracellular region, and plasma membrane. These results suggest that mNG:: LET-60 can be a useful tool for determining LET-60 levels and localization once its functionality in a developmental or physiological process is established.

2.
Elife ; 122023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405383

RESUMEN

Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the Caenorhabditis elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell-specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor-2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.


Asunto(s)
Receptor con Dominio Discoidina 2 , Integrinas , Animales , Femenino , Receptores con Dominio Discoidina/metabolismo , Transducción de Señal , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Colágeno/metabolismo , Adhesión Celular/fisiología , Receptor con Dominio Discoidina 2/metabolismo
3.
bioRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993349

RESUMEN

Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the C. elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor 2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.

4.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36282214

RESUMEN

Basement membrane (BM) matrices surround and separate most tissues. However, through poorly understood mechanisms, BMs of adjacent tissue can also stably link to support organ structure and function. Using endogenous knock-in fluorescent proteins, conditional RNAi, optogenetics, and quantitative live imaging, we identified extracellular matrix proteins mediating a BM linkage (B-LINK) between the uterine utse and epidermal seam cell BMs in Caenorhabditis elegans that supports the uterus during egg-laying. We found that hemicentin is secreted by the utse and promotes fibulin-1 assembly to jointly initiate the B-LINK. During egg-laying, however, both proteins' levels decline and are not required for B-LINK maintenance. Instead, we discovered that hemicentin recruits ADAMTS9/20, which facilitates the assembly of high levels of type IV collagen that sustains the B-LINK during the mechanically active egg-laying period. This work reveals mechanisms underlying BM-BM linkage maturation and identifies a crucial function for hemicentin and fibulin-1 in initiating attachment and type IV collagen in strengthening this specialized form of tissue linkage.


Asunto(s)
Membrana Basal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Colágeno Tipo IV , Animales , Femenino , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Óvulo , Útero
5.
Sci Adv ; 8(20): eabn2265, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35584218

RESUMEN

Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFß. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.


Asunto(s)
Caenorhabditis elegans , Pez Cebra , Animales , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Pez Cebra/genética
6.
Dev Cell ; 54(1): 60-74.e7, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32585132

RESUMEN

Basement membranes (BMs) are supramolecular matrices built on laminin and type IV collagen networks that provide structural and signaling support to tissues. BM complexity, however, has hindered an understanding of its formation, dynamics, and regulation. Using genome editing, we tagged 29 BM matrix components and receptors in C. elegans with mNeonGreen. Here, we report a common template that initiates BM formation, which rapidly diversifies during tissue differentiation. Through photobleaching studies, we show that BMs are not static-surprisingly, many matrix proteins move within the laminin and collagen scaffoldings. Finally, quantitative imaging, conditional knockdown, and optical highlighting indicate that papilin, a poorly studied glycoprotein, is the most abundant component in the gonadal BM, where it facilitates type IV collagen removal during BM expansion and tissue growth. Together, this work introduces methods for holistic investigation of BM regulation and reveals that BMs are highly dynamic and capable of rapid change to support tissues.


Asunto(s)
Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Colágeno/metabolismo , Laminina/genética , Laminina/metabolismo , Movimiento (Física)
7.
J Cell Biol ; 218(9): 3098-3116, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31387941

RESUMEN

Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/ßPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/ßPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.


Asunto(s)
Membrana Basal/embriología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Colágeno Tipo IV/metabolismo , Cadenas beta de Integrinas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colágeno Tipo IV/genética , Cadenas beta de Integrinas/genética
8.
Curr Biol ; 27(17): R850-R852, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28898649

RESUMEN

Organ sculpting requires directed physical force generation. Force imbalances are primarily thought to arise from within cells. A new study, however, demonstrates that an extracellular-matrix-based stiffness gradient in the Drosophila egg chamber instructs tissue elongation.


Asunto(s)
Proteínas de Drosophila , Matriz Extracelular , Animales , Membrana Basal , Drosophila , Morfogénesis
9.
Curr Biol ; 27(6): R207-R211, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28324731

RESUMEN

Basement membranes (BMs) are thin, dense sheets of specialized, self-assembled extracellular matrix that surround most animal tissues (Figure 1, top). The emergence of BMs coincided with the origin of multicellularity in animals, suggesting that they were essential for the formation of tissues. Their sheet-like structure derives from two independent polymeric networks - one of laminin and one of type IV collagen (Figure 1, bottom). These independent collagen and laminin networks are thought to be linked by several additional extracellular matrix proteins, including nidogen and perlecan (Figure 1, bottom). BMs are usually associated with cells and are anchored to cell surfaces through interactions with adhesion receptors and sulfated glycolipids (Figure 1, bottom). Various combinations of other proteins, glycoproteins, and proteoglycans - including fibulin, hemicentin, SPARC, agrin, and type XVIII collagen - are present in BMs, creating biochemically and biophysically distinct structures that serve a wide variety of functions. BMs have traditionally been viewed as static protein assemblies that provide structural support to tissues. However, recent studies have begun to uncover dynamic, active roles for BMs in many developmental processes. Here, we discuss established and emerging roles of BMs in development, tissue construction, and tissue homeostasis. We also explore how cells traverse BM barriers, the roles of BMs in human diseases, and future directions for the field.


Asunto(s)
Membrana Basal/fisiología , Caenorhabditis elegans/fisiología , Susceptibilidad a Enfermedades/fisiopatología , Drosophila/fisiología , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Drosophila/crecimiento & desarrollo , Crecimiento/fisiología , Homeostasis/fisiología , Humanos , Ratones
10.
Dev Cell ; 38(1): 1-3, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27404350

RESUMEN

In this issue of Developmental Cell, Isabella and Horne-Badovinac (2016) show that Rab10 directs site-specific secretion of basement membrane components, which assemble into fibrils that spool out to elongate the Drosophila egg chamber. These findings establish the basement membrane's active role in tissue sculpting.


Asunto(s)
Membrana Basal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Unión al GTP Monoméricas/metabolismo , Morfogénesis/fisiología , Organogénesis/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión al GTP Monoméricas/genética
11.
PLoS Genet ; 12(2): e1005905, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26926673

RESUMEN

Overexpression of SPARC, a collagen-binding glycoprotein, is strongly associated with tumor invasion through extracellular matrix in many aggressive cancers. SPARC regulates numerous cellular processes including integrin-mediated cell adhesion, cell signaling pathways, and extracellular matrix assembly; however, the mechanism by which SPARC promotes cell invasion in vivo remains unclear. A main obstacle in understanding SPARC function has been the difficulty of visualizing and experimentally examining the dynamic interactions between invasive cells, extracellular matrix and SPARC in native tissue environments. Using the model of anchor cell invasion through the basement membrane (BM) extracellular matrix in Caenorhabditis elegans, we find that SPARC overexpression is highly pro-invasive and rescues BM transmigration in mutants with defects in diverse aspects of invasion, including cell polarity, invadopodia formation, and matrix metalloproteinase expression. By examining BM assembly, we find that overexpression of SPARC specifically decreases levels of BM type IV collagen, a crucial structural BM component. Reduction of type IV collagen mimicked SPARC overexpression and was sufficient to promote invasion. Tissue-specific overexpression and photobleaching experiments revealed that SPARC acts extracellularly to inhibit collagen incorporation into BM. By reducing endogenous SPARC, we also found that SPARC functions normally to traffic collagen from its site of synthesis to tissues that do not express collagen. We propose that a surplus of SPARC disrupts extracellular collagen trafficking and reduces BM collagen incorporation, thus weakening the BM barrier and dramatically enhancing its ability to be breached by invasive cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Colágeno Tipo IV/metabolismo , Osteonectina/metabolismo , Animales , Animales Modificados Genéticamente , Membrana Basal , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Mutación , Osteonectina/genética , Proteínas Proto-Oncogénicas c-fos/genética
12.
PLoS Genet ; 12(1): e1005786, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765257

RESUMEN

Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al GTP/genética , Inhibidores de Disociación de Guanina Nucleótido/genética , Neoplasias/genética , Podosomas/genética , Animales , Membrana Basal/crecimiento & desarrollo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Ciclo Celular/biosíntesis , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Proteínas de Unión al GTP/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido/biosíntesis , Humanos , Neoplasias/patología , Podosomas/patología , Transducción de Señal
13.
Cell Cycle ; 11(10): 1929-37, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22544326

RESUMEN

The actin cross-linking protein, α-actinin, plays a crucial role in mediating furrow ingression during cytokinesis. However, the mechanism by which its dynamics are regulated during this process is poorly understood. Here we have investigated the role of calcium sensitivity of α-actinin in the regulation of its dynamics by generating a functional calcium-insensitive mutant (EFM). GFP-tagged EFM (EFM-GFP) localized to the equatorial regions during cell division. However, the maximal equatorial accumulation of EFM-GFP was significantly smaller in comparison to α-actinin-GFP when it was expressed in normal cells and cells depleted of endogenous α-actinin. No apparent defects in cytokinesis were observed in these cells. However, F-actin levels at the equator were significantly reduced in cells expressing EFM-GFP as compared with α-actinin-GFP at furrow initiation but were recovered during furrow ingression. These results suggest that calcium sensitivity of α-actinin is required for its equatorial accumulation that is crucial for the initial equatorial actin assembly but is dispensable for cytokinesis. Equatorial RhoA localization was not affected by EFM-GFP overexpression, suggesting that equatorial actin assembly is predominantly driven by the RhoA-dependent mechanism. Our observations shed new light on the role and regulation of the accumulation of pre-existing actin filaments in equatorial actin assembly during cytokinesis.


Asunto(s)
Actinina/metabolismo , Calcio/metabolismo , Citocinesis/fisiología , Actinina/antagonistas & inhibidores , Actinina/genética , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA