RESUMEN
Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with extracting or expressing large numbers of individual venoms and venom-like molecules have precluded their therapeutic evaluation via high throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms". We employed programmable M13 hyperphage display to preserve critical disulfide-bonded structures for highly parallelized single-round biopanning with quantitation via high-throughput DNA sequencing. Our approach led to the discovery of Kunitz type domain containing proteins that target the human itch receptor Mas-related G protein-coupled receptor X4 (MRGPRX4), which plays a crucial role in itch perception. Deep learning-based structural homology mining identified two endogenous human homologs, tissue factor pathway inhibitor (TFPI) and serine peptidase inhibitor, Kunitz type 2 (SPINT2), which exhibit agonist-dependent potentiation of MRGPRX4. Highly multiplexed screening of animal venoms and metavenoms is therefore a promising approach to uncover new drug candidates.
RESUMEN
Assays linking cellular phenotypes with T cell or B cell antigen receptor sequences are crucial for characterizing adaptive immune responses. Existing methodologies are limited by low sample throughput and high cost. Here, we present INtraCEllular Reverse Transcription with Sorting and sequencing (INCERTS), an approach that combines molecular indexing of receptor repertoires within intact cells and fluorescence-activated cell sorting (FACS). We demonstrate that INCERTS enables efficient processing of millions of cells from pooled human peripheral blood mononuclear cell (PBMC) samples while retaining robust association between T cell receptor (TCR) sequences and cellular phenotypes. We used INCERTS to discover antigen-specific TCRs from patients with cancer immunized with a novel mutant KRAS peptide vaccine. After ex vivo stimulation, 28 uniquely barcoded samples were pooled prior to FACS into peptide-reactive and non-reactive CD4+ and CD8+ populations. Combining complementary patient-matched single-cell RNA sequencing (scRNA-seq) data enabled retrieval of full-length, paired TCR alpha and beta chain sequences for future validation of therapeutic utility.
Asunto(s)
Leucocitos Mononucleares , Transcripción Reversa , Humanos , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genéticaRESUMEN
CD8+ T cells mediate acute rejection of allografts, which threatens the long-term survival of transplanted organs. Using MHC class I tetramers, we find that allogeneic CD8+ T cells are present at an elevated naive precursor frequency relative to other epitopes, only modestly increase in number after grafting, and maintain high T cell receptor diversity throughout the immune response. While antigen-specific effector CD8+ T cells poorly express the canonical effector marker KLRG-1, expression of the activated glycoform of CD43 defines potent effectors after transplantation. Activated CD43+ effector T cells maintain high expression of the coreceptor induced T cell costimulator (ICOS) in the presence of CTLA-4 immunoglobulin (Ig), and dual CTLA-4 Ig/anti-ICOS treatment prolongs graft survival. These data demonstrate that graft-specific CD8+ T cells have a distinct response profile relative to anti-pathogen CD8+ T cells and that CD43 and ICOS are critical surface receptors that define potent effector CD8+ T cell populations that form after transplantation.
Asunto(s)
Anticuerpos , Linfocitos T CD8-positivos , Antígeno CTLA-4 , Trasplante Homólogo , Epítopos , Interleucina-2RESUMEN
Pathogenic autoreactive antibodies that may be associated with life-threatening coronavirus disease 2019 (COVID-19) remain to be identified. Here, we show that self-assembled genome-scale libraries of full-length proteins covalently coupled to unique DNA barcodes for analysis by sequencing can be used for the unbiased identification of autoreactive antibodies in plasma samples. By screening 11,076 DNA-barcoded proteins expressed from a sequence-verified human ORFeome library, the method, which we named MIPSA (for Molecular Indexing of Proteins by Self-Assembly), allowed us to detect circulating neutralizing type-I and type-III interferon (IFN) autoantibodies in five plasma samples from 55 patients with life-threatening COVID-19. In addition to identifying neutralizing type-I IFN-α and IFN-ω autoantibodies and other previously known autoreactive antibodies in patient plasma, MIPSA enabled the detection of as yet unidentified neutralizing type-III anti-IFN-λ3 autoantibodies that were not seen in healthy plasma samples or in convalescent plasma from ten non-hospitalized individuals with COVID-19. The low cost and simple workflow of MIPSA will facilitate unbiased high-throughput analyses of protein-antibody, protein-protein and protein-small-molecule interactions.
Asunto(s)
Autoanticuerpos , COVID-19 , COVID-19/terapia , Biblioteca de Genes , Humanos , Inmunización Pasiva , Interferón-alfa , Sueroterapia para COVID-19RESUMEN
Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Diversidad de Anticuerpos , Epítopos , Femenino , Centro Germinal , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Masculino , Ratones , Vacunas de Productos InactivadosRESUMEN
Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of â¼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.
Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Secuencia de Aminoácidos , Anticuerpos , Formación de Anticuerpos , Bacteriófagos/genética , Estudio de Asociación del Genoma Completo , Humanos , Epítopos Inmunodominantes , Prevalencia , Factores de Virulencia/genéticaRESUMEN
Unbiased antibody profiling can identify the targets of an immune reaction. A number of likely pathogenic autoreactive antibodies have been associated with life-threatening SARS-CoV-2 infection; yet, many additional autoantibodies likely remain unknown. Here we present Molecular Indexing of Proteins by Self Assembly (MIPSA), a technique that produces ORFeome-scale libraries of proteins covalently coupled to uniquely identifying DNA barcodes for analysis by sequencing. We used MIPSA to profile circulating autoantibodies from 55 patients with severe COVID-19 against 11,076 DNA-barcoded proteins of the human ORFeome library. MIPSA identified previously known autoreactivities, and also detected undescribed neutralizing interferon lambda 3 (IFN-λ3) autoantibodies. At-risk individuals with anti- IFN-λ3 antibodies may benefit from interferon supplementation therapies, such as those currently undergoing clinical evaluation.
RESUMEN
Reciprocal epithelial-mesenchymal signaling is essential for morphogenesis, including branching of the lung. In the mouse, mesenchymal cells differentiate into airway smooth muscle that wraps around epithelial branches, but this contractile tissue is absent from the early avian lung. Here, we have found that branching morphogenesis in the embryonic chicken lung requires extracellular matrix (ECM) remodeling driven by reciprocal interactions between the epithelium and mesenchyme. Before branching, the basement membrane wraps the airway epithelium as a spatially uniform sheath. After branch initiation, however, the basement membrane thins at branch tips; this remodeling requires mesenchymal expression of matrix metalloproteinase 2, which is necessary for branch extension but for not branch initiation. As branches extend, tenascin C (TNC) accumulates in the mesenchyme several cell diameters away from the epithelium. Despite its pattern of accumulation, TNC is expressed exclusively by epithelial cells. Branch extension coincides with deformation of adjacent mesenchymal cells, which correlates with an increase in mesenchymal fluidity at branch tips that may transport TNC away from the epithelium. These data reveal novel epithelial-mesenchymal interactions that direct ECM remodeling during airway branching morphogenesis.
Asunto(s)
Matriz Extracelular/fisiología , Pulmón/embriología , Metaloproteinasas de la Matriz/metabolismo , Mesodermo/embriología , Mucosa Respiratoria/embriología , Animales , Membrana Basal/embriología , Líquidos Corporales/fisiología , Forma de la Célula , Embrión de Pollo , Matriz Extracelular/enzimología , Pulmón/enzimología , Pulmón/metabolismo , Mesodermo/enzimología , Morfogénesis , Mucosa Respiratoria/enzimología , Tenascina/metabolismo , Técnicas de Cultivo de TejidosRESUMEN
Flowcoating is a popular technique for generating thin (5-200 nm), substrate-supported polymer films. In this process, a reservoir of coating fluid is held between the horizontal substrate and a nearly horizontal blade above the substrate; a film of fluid is drawn out of the reservoir by moving the substrate. Accelerating the substrate produces a film with a thickness gradient, particularly useful for high-throughput measurements where film thickness is an important parameter. The present work compares experimental film thickness profiles with a model based on a Landau-Levich treatment to identify the experimental parameters which govern film thickness. The key parameters are the capillary number and the radius of curvature of the reservoir's static meniscus, which is set by the blade angle, gap height, solution reservoir volume, and contact angles of the fluid with the blade and substrate. The results show excellent quantitative agreement with the first-principles model; the model thus provides a design approach which allows a user to produce polymer thin films of virtually any desired thickness profile.
Asunto(s)
Membranas Artificiales , Polímeros/químicaRESUMEN
VH replacement (VHR) is a type of antibody gene rearrangement in which an upstream heavy chain variable gene segment (VH) invades a pre-existing rearrangement (VDJ). In this Hypothesis and Theory article, we begin by reviewing the mechanism of VHR, its developmental timing and its potential biological consequences. Then we explore the hypothesis that specific sequence motifs called footprints reflect VHR versus other processes. We provide a compilation of footprint sequences from different regions of the antibody heavy chain, and include data from the literature and from a high throughput sequencing experiment to evaluate the significance of footprint sequences. We conclude by discussing the difficulties of attributing footprints to VHR.