Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 14: 1154528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37539058

RESUMEN

The desmoplastic reaction observed in many cancers is a hallmark of disease progression and prognosis, particularly in breast and pancreatic cancer. Stromal-derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as such plays a critical role in driving cancer progression. Using fibroblast-derived matrices (FDMs), we show that cancer cells have increased growth on cancer associated FDMs, when compared to FDMs derived from non-malignant tissue (normal) fibroblasts. We assess the changes in ECM characteristics from normal to cancer-associated stroma at the primary tumor site. Compositional, structural, and mechanical analyses reveal significant differences, with an increase in abundance of core ECM proteins, coupled with an increase in stiffness and density in cancer-associated FDMs. From compositional changes of FDM, we derived a 36-ECM protein signature, which we show matches in large part with the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases progression. Additionally, this signature also matches at the transcriptomic level in multiple cancer types in patients, prognostic of their survival. Together, our results show relevance of FDMs for cancer modelling and identification of desmoplastic ECM components for further mechanistic studies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pronóstico , Neoplasias Pancreáticas/patología , Fibroblastos/metabolismo , Carcinoma Ductal Pancreático/patología , Proteínas de la Matriz Extracelular , Neoplasias Pancreáticas
2.
Adv Healthc Mater ; 11(1): e2100684, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34734500

RESUMEN

Metastatic cancer spread is responsible for most cancer-related deaths. To colonize a new organ, invading cells adapt to, and remodel, the local extracellular matrix (ECM), a network of proteins and proteoglycans underpinning all tissues, and a critical regulator of homeostasis and disease. However, there is a major lack in tools to study cancer cell behavior within native 3D ECM. Here, an in-house designed bioreactor, where mouse organ ECM scaffolds are perfused and populated with cells that are challenged to colonize it, is presented. Using a specialized bioreactor chamber, it is possible to monitor cell behavior microscopically (e.g., proliferation, migration) within the organ scaffold. Cancer cells in this system recapitulate cell signaling observed in vivo and remodel complex native ECM. Moreover, the bioreactors are compatible with co-culturing cell types of different genetic origin comprising the normal and tumor microenvironment. This degree of experimental flexibility in an organ-specific and 3D context, opens new possibilities to study cell-cell and cell-ECM interplay and to model diseases in a controllable organ-specific system ex vivo.


Asunto(s)
Matriz Extracelular , Andamios del Tejido , Animales , Reactores Biológicos , Ratones , Perfusión , Proteoglicanos , Ingeniería de Tejidos
3.
Cancers (Basel) ; 13(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34283050

RESUMEN

During the metastatic process, breast cancer cells must come into contact with the extra-cellular matrix (ECM) at every step. The ECM provides both structural support and biochemical cues, and cell-ECM interactions can lead to changes in drug response. Here, we used fibroblast-derived ECM (FDM) to perform high throughput drug screening of 4T1 breast cancer cells on metastatic organ ECM (lung), and we see that drug response differs from treatment on plastic. The FDMs that we can produce from different organs are abundant in and contains a complex mixture of ECM proteins. We also show differences in ECM composition between the primary site and secondary organ sites. Furthermore, we show that global kinase signalling of 4T1 cells on the ECM is relatively unchanged between organs, while changes in signalling compared to plastic are significant. Our study highlights the importance of context when testing drug response in vitro, showing that consideration of the ECM is critically important.

4.
Nat Commun ; 12(1): 3414, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099731

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) patients have a 5-year survival rate of only 8% largely due to late diagnosis and insufficient therapeutic options. Neutrophils are among the most abundant immune cell type within the PDAC tumor microenvironment (TME), and are associated with a poor clinical prognosis. However, despite recent advances in understanding neutrophil biology in cancer, therapies targeting tumor-associated neutrophils are lacking. Here, we demonstrate, using pre-clinical mouse models of PDAC, that lorlatinib attenuates PDAC progression by suppressing neutrophil development and mobilization, and by modulating tumor-promoting neutrophil functions within the TME. When combined, lorlatinib also improves the response to anti-PD-1 blockade resulting in more activated CD8 + T cells in PDAC tumors. In summary, this study identifies an effect of lorlatinib in modulating tumor-associated neutrophils, and demonstrates the potential of lorlatinib to treat PDAC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Lactamas Macrocíclicas/farmacología , Neutrófilos/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Aminopiridinas , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Lactamas , Lactamas Macrocíclicas/uso terapéutico , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Pirazoles , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA