Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Adv Healthc Mater ; : e2302682, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575148

RESUMEN

Diabetes mellitus (DM) has substantial global implications and contributes to vascular inflammation and the onset of atherosclerotic cardiovascular diseases. However, translating the findings from animal models to humans has inherent limitations, necessitating a novel platform. Therefore, herein, an arterial model is established using a microphysiological system. This model successfully replicates the stratified characteristics of human arteries by integrating collagen, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs). Perfusion via a peristaltic pump shows dynamic characteristics distinct from those of static culture models. High glucose, advanced glycation end products (AGEs), and interleukin-1 beta are employed to stimulate diabetic conditions, resulting in notable cellular changes and different levels of cytokines and nitric oxide. Additionally, the interactions between the disease models and oxidized low-density lipoproteins (LDL) are examined. Finally, the potential therapeutic effects of metformin, atorvastatin, and diphenyleneiodonium are investigated. Metformin and diphenyleneiodonium mitigate high-glucose- and AGE-associated pathological changes, whereas atorvastatin affects only the morphology of ECs. Altogether, the arterial model represents a pivotal advancement, offering a robust and insightful platform for investigating cardiovascular diseases and their corresponding drug development.

2.
Bioact Mater ; 34: 401-413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282966

RESUMEN

In vitro vascularized cancer models utilizing microfluidics have emerged as a promising tool for mechanism study and drug screening. However, the lack of consideration and preparation methods for cancer cellular sources that are capable of adequately replicating the metastatic features of circulating tumor cells contributed to low relevancy with in vivo experimental results. Here, we show that the properties of cancer cellular sources have a considerable impact on the validity of the in vitro metastasis model. Notably, with a hydrophobic surface, we can create highly metastatic spheroids equipped with aggressive invasion, endothelium adhesion capabilities, and activated metabolic features. Combining these metastatic spheroids with the well-constructed microfluidic-based extravasation model, we validate that these metastatic spheroids exhibited a distinct extravasation response to epidermal growth factor (EGF) and normal human lung fibroblasts compared to the 2D cultured cancer cells, which is consistent with the previously reported results of in vivo experiments. Furthermore, the applicability of the developed model as a therapeutic screening platform for cancer extravasation is validated through profiling and inhibition of cytokines. We believe this model incorporating hydrophobic surface-cultured 3D cancer cells provides reliable experimental data in a clear and concise manner, bridging the gap between the conventional in vitro models and in vivo experiments.

3.
Acta Biomater ; 177: 216-227, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253303

RESUMEN

The effects of helical flow in a blood vessel are investigated in a dynamic flow generator using surface acoustic wave (SAW) in the microfluidic device. The SAW, generated by an interdigital transducer (IDT), induces acoustic streaming, resulting in a stable and consistent helical flow pattern in microscale channels. This approach allows rapid development of helical flow within the channel without directly contacting the medium. The precise design of the window enables the creation of distinct unidirectional vortices, which can be controlled by adjusting the amplitude of the SAW. Within this device, optimal operational parameters of the dynamic flow generator to preserve the integrity of endothelial cells are found, and in such settings, the actin filaments within the cells are aligned to the desired state. Our findings reveal that intracellular Ca2+ concentrations vary in response to flow conditions. Specifically, comparable maximum intensity and graphical patterns were observed between low-flow rate helical flow and high-flow rate Hagen-Poiseuille flow. These suggest that the cells respond to the helical flow through mechanosensitive ion channels. Finally, adherence of monocytes is effectively reduced under helical flow conditions in an inflammatory environment, highlighting the atheroprotective role of helical flow. STATEMENT OF SIGNIFICANCE: Helical flow in blood vessels is well known to prevent atherosclerosis. However, despite efforts to replicate helical flow in microscale channels, there is still a lack of in vitro models which can generate helical flow for analyzing its effects on the vascular system. In this study, we developed a method for generating steady and constant helical flow in microfluidic channel using acoustofluidic techniques. By utilizing this dynamic flow generator, we were able to observe the atheroprotective aspects of helical flow in vitro, including the enhancement of calcium ion flux and reduction of monocyte adhesion. This study paves the way for an in vitro model of dynamic cell culture and offers advanced investigation into helical flow in our circulatory system.


Asunto(s)
Aterosclerosis , Células Endoteliales , Humanos , Acústica , Microfluídica , Dispositivos Laboratorio en un Chip
4.
Lab Chip ; 23(18): 4117-4125, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655531

RESUMEN

The lysis of cancer cells inside a sessile droplet was performed using traveling surface acoustic waves (SAWs) without any chemical reagents. Raman spectrum profiling was then carried out to explore detailed cell-derived data. The Rayleigh waves formed by an interdigital transducer were made to propagate along the surface of an LiNbO3 substrate. Polystyrene microparticles (PSMPs) were used to establish mechanical cell lysis effectively, and gold nanoparticles (AuNPs) were added to enhance the Raman signals from the lysed cells by SAWs. The lysis efficiency was evaluated according to the size and concentration of the PSMPs in experiments where the frequency was varied. Lysis occurred mainly by mechanical collision using PSMPs in a high-frequency domain, and the lysis efficiency was improved by increasing the application time and the energy density of the SAWs. Raman signals from the lysed cells were greatly enhanced by nanogaps formed by the AuNPs, which were evenly distributed irrespective of the SAWs through the frequency-independent behavior of the AuNPs. Finally, detailed Raman spectra of MDA-MB-231, malignant breast cancer cells, were acquired, and various organic matter-derived peaks were observed. The 95% confidence region for cells subjected to lysis was more widely distributed than that of cells not subjected to lysis. The proposed SAW platform is expected to facilitate the detection of small quantities and to be applied in biomedical applications.


Asunto(s)
Micropartículas Derivadas de Células , Nanopartículas del Metal , Neoplasias , Oro , Muerte Celular , Poliestirenos
5.
Cyborg Bionic Syst ; 4: 0043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533545

RESUMEN

Dysfunctional blood vessels are implicated in various diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Several studies have attempted to prevent and treat vascular diseases and understand interactions between these diseases and blood vessels across different organs and tissues. Initial studies were conducted using 2-dimensional (2D) in vitro and animal models. However, these models have difficulties in mimicking the 3D microenvironment in human, simulating kinetics related to cell activities, and replicating human pathophysiology; in addition, 3D models involve remarkably high costs. Thus, in vitro bioengineered models (BMs) have recently gained attention. BMs created through biofabrication based on tissue engineering and regenerative medicine are breakthrough models that can overcome limitations of 2D and animal models. They can also simulate the natural microenvironment in a patient- and target-specific manner. In this review, we will introduce 3D bioprinting methods for fabricating bioengineered blood vessel models, which can serve as the basis for treating and preventing various vascular diseases. Additionally, we will describe possible advancements from tubular to vascular models. Last, we will discuss specific applications, limitations, and future perspectives of fabricated BMs.

6.
Biofabrication ; 15(4)2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37567223

RESUMEN

Despite the advantages of microfluidic system in drug screening, vascular systems responsible for the transport of drugs and nutrients have been hardly considered in the microfluidic-based chemotherapeutic screening. Considering the physiological characteristics of highly vascularized urinary tumors, we here investigated the chemotherapeutic response of bladder tumor cells using a vascularized tumor on a chip. The microfluidic chip was designed to have open-top region for tumor sample introduction and hydrophilic rail for spontaneous hydrogel patterning, which contributed to the construction of tumor-hydrogel-endothelium interfaces in a spatiotemporal on-demand manner. Utilizing the chip where intravascularly injected cisplatin diffuse across the endothelium and transport into tumor samples, chemotherapeutic responses of cisplatin-resistant or -susceptible bladder tumor cells were evaluated, showing the preservation of cellular drug resistance even within the chip. The open-top structure also enabled the direct harvest of tumor samples and post analysis in terms of secretome and gene expressions. Comparing the cisplatin efficacy of the cisplatin-resistant tumor cells in the presence or absence of endothelium, we found that the proliferation rates of tumor cells were increased in the vasculature-incorporated chip. These have suggested that our vascularized tumor chip allows the establishment of vascular-gel-tumor interfaces in spatiotemporal manners and further enables investigations of chemotherapeutic screening.


Asunto(s)
Antineoplásicos , Neoplasias de la Vejiga Urinaria , Humanos , Sistemas Microfisiológicos , Cisplatino/farmacología , Dispositivos Laboratorio en un Chip , Antineoplásicos/farmacología , Endotelio , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Hidrogeles/química
7.
ACS Biomater Sci Eng ; 9(8): 4929-4939, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37494673

RESUMEN

The outer blood-retinal barrier (oBRB) provides an optimal environment for the function of the photoreceptor by regulating the exchange of molecules between subretinal space and the choriocapillaris, and its dysfunction could impair the photoreceptor's function and vision. The existing in vitro models have limitations in reproducing the barrier function or physiological characteristics of oBRB and choriocapillaris. Here, we engineered a microphysiological system-based oBRB-choriocapillaris model that simultaneously incorporates the desired physiological characteristics and is simple to fabricate. First, we generated microvascular networks to mimic choriocapillaris and investigated the role of fibroblasts in vasculogenesis. By adding retinal pigment epithelial cells to one side of blood vessels formed with endothelial cells and fibroblasts and optimizing their culture medium conditions, we established an oBRB-choriocapillaris model. To verify the physiological similarity of our oBRB-choriocapillaris model, we identified the polarization and expression of the tight junction of the retinal pigment epithelium, Bruch's membrane, and the fenestral diaphragm of choriocapillaris. Finally, we tried to recapitulate the diabetes mellitus environment in our model with hyperglycemia and diabetes-related cytokines. This induced a decrease in tight junction integrity, loss of barrier function, and shrinkage of blood vessels, similar to the in vivo pathological changes observed in the oBRB and choriocapillaris. The oBRB-choriocapillaris model developed using a microphysiological system is expected to offer a valuable in vitro platform for retinal and choroidal vascular diseases in preclinical applications.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Barrera Hematorretinal/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Células Endoteliales/metabolismo , Sistemas Microfisiológicos , Coroides/irrigación sanguínea , Coroides/metabolismo , Coroides/patología , Diabetes Mellitus/patología
8.
Front Oncol ; 12: 1052192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439519

RESUMEN

Emerging microfluidic disease models have amply demonstrated their value in many fields of cancer research. These in vitro technologies recapitulate key aspects of metastatic cancer, including the process of tumor cell arrest and extravasation at the site of the metastatic tumor. To date, extensive efforts have been made to capture key features of the microvasculature to reconstitute the pre-metastatic niche and investigate dynamic extravasation behaviors using microfluidic systems. In this mini-review, we highlight recent microfluidic vascular models of tumor cell extravasation and explore how this approach contributes to development of in vitro disease models to enhance understanding of metastasis in vivo.

9.
Lab Chip ; 22(22): 4335-4348, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226506

RESUMEN

A tumor is composed of heterogeneous cell population, which is known as tumor stroma. In particular, blood vessels have an indispensable role in the tumor microenvironment acting as a key player in anti-cancer drug delivery. Recently, efforts have been made to accurately recapitulate the microenvironment by employing distinct cell types, however, the proper formation of perfusable tumor tissue is challenging. Here, perfusable tumor tissue is engineered by implanting multicellular tumor spheroids inside the microfluidic devices. Blood perfusion, spheroid growth, and vascular dynamics were monitored according to the spheroid composition and the contribution of internal and external vascular cells to spheroid perfusion was analyzed. Most notably, the increased penetration depth of fluorescence conjugated anti-cancer drug was observed in tri-culture spheroids. The implementation of tumor microenvironment reconstruction developed in this study not only creates a perfusable tumor vascular model but can also be utilized as a novel drug screening platform with patient-derived samples.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Esferoides Celulares , Dispositivos Laboratorio en un Chip , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Perfusión
10.
Lab Chip ; 22(22): 4359-4368, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36254466

RESUMEN

Wet age-related macular degeneration (AMD) is a severe ophthalmic disease that develops in the outer blood-retinal barrier (oBRB), involving two types of cells, the retinal pigment epithelium (RPE) and the choriocapillaris endothelium (CCE). Unfortunately, the pathogenesis of AMD is unclear, and the risk of the only effective therapy (Anti-VEGF injection) has been consistently argued. Also, since oBRB is hard to observe in vivo, an in vitro model for the pathological study is necessary. Here, we propose an advanced oBRB model, enhanced in two major ways: fully vascularized CCE and the in vivo analogous distance between RPE and CCE. Our model consists of an RPE (ARPE-19) monolayer with adjacent CCE (HUVEC) embedded fibrin gel in the microfluidic chip and required four days to construct an oBRB. Notably, the intercellular distance was tuned to the in vivo scale (<100 µm) without any extraneous scaffold in between. Thus, the two cell layers can interact freely through the extracellular matrix (ECM) in vivo. This is significant as wet AMD is mainly developed through broken intercellular interaction. Thanks to this in vivo similarity, the model incubated under hypoxic conditions, similar to an oxygen-induced retinopathy animal model, showed upregulated vascularization comparable to the AMD condition. We envisage that our model can be used to assist the investigation of AMD.


Asunto(s)
Degeneración Macular , Degeneración Macular Húmeda , Animales , Barrera Hematorretinal , Microfluídica , Epitelio Pigmentado de la Retina/patología , Degeneración Macular/patología , Degeneración Macular Húmeda/complicaciones , Degeneración Macular Húmeda/patología
11.
Adv Sci (Weinh) ; 9(16): 2105809, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35686137

RESUMEN

The cytotoxic response of natural killer (NK) cells in a microreactor to surface acoustic waves (SAWs) is investigated, where the SAWs produce an acoustic streaming flow. The Rayleigh-type SAWs form by an interdigital transducer propagated along the surface of a piezoelectric substrate in order to allow the dynamic stimulation of functional immune cells in a noncontact and rotor-free manner. The developed acoustofluidic microreactor enables a dynamic cell culture to be set up in a miniaturized system while maintaining the performance of agitating media. The present SAW system creates acoustic streaming flow in the cylindrical microreactor and applies flow-induced shear stress to the cells. The suspended NK cells are found to not be damaged by the SAW operation of the adjusted experimental setup. Suspended NK cell aggregates subjected to an SAW treatment show increased intracellular Ca2+ concentrations. Simultaneously treating the NK cells with SAWs and protein kinase C activator enhances the lysosomal protein expressions of the cells and the cell-mediated cytotoxicity against target tumor cells. These have important implications by showing that acoustically actuated system allows dynamic cell culture without cell damages and further alters cytotoxicity-related cellular activities.


Asunto(s)
Acústica , Sonido , Recuento de Células , Técnicas de Cultivo de Célula , Transductores
12.
Lab Chip ; 22(1): 47-56, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34821225

RESUMEN

The behaviours of microparticles inside a sessile droplet actuated by surface acoustic waves (SAWs) were investigated, where the SAWs produced an acoustic streaming flow and imparted an acoustic radiation force on the microparticles. The Rayleigh waves formed by a comb-like interdigital transducer were made to propagate along the surface of a LiNbO3 substrate in order to allow the manipulation of microparticles in a label-free and non-contact manner. Polystyrene microparticles were first employed to describe the behaviours inside a sessile droplet. The influence of the volume of the sessile droplet on the behaviours of the microparticles was examined by changing the contact angle of the droplet. Next, cancer cells were suspended in a sessile droplet, and the influence of contact angle on the behaviours of the cancer cells was investigated. A long gelation time was afforded by using a PEGylated fibrin gel. A primary tumour was mimicked by patterning the cancer cells to be concentrated in the middle of the sessile droplet. The non-contact manipulation property of acoustic waves was indicated to be biocompatible and enabled a structure-free platform configuration. Three-dimensional aggregated culture models were observed to make the cancer cells display an elevated expression of E-cadherin. The efficacy of the anticancer drug tirapazamine increased in the aggregated cancer cells, attributed to the low levels of oxygen in this formation of cancer cells.


Asunto(s)
Neoplasias , Sonido , Acústica , Poliestirenos , Transductores
13.
Lab Chip ; 21(18): 3449-3457, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34342326

RESUMEN

An efficient and accurate antibiotic susceptibility test (AST) is indispensable for measuring the antimicrobial resistance of pathogenic bacteria. A minimal inhibitory concentration (MIC) can be obtained without performing repeated dilutions of the antibiotic by forming a linear antibiotic concentration gradient in a microfluidic channel. We demonstrated a device designed to use travelling surface acoustic waves (TSAWs) to enable a rapid formation of an antibiotic gradient in a few seconds. The TSAWs produced by a focused interdigital transducer deposited on the surface of a piezoelectric (LiNbO3) substrate generated an acoustic streaming flow inside a microfluidic channel, which mixed confluent streams of antibiotics in a controlled fashion. The growth of bacteria exposed to the antibiotic gradient was determined by measuring the MIC, which was used as an indicator of the effectiveness of the AST. The concentration gradient produced using our device was linear, a feature that enhanced the reliability of measurements throughout the microchannel. Two ASTs, namely Pseudomonas aeruginosa against gentamicin and levofloxacin were chosen for the case of slowly proliferating bacteria, and one AST, namely Escherichia coli against gentamicin, were chosen for the rapidly proliferating case. Appropriate antibiotic doses for Pseudomonas aeruginosa and Escherichia coli were each obtained in an efficient manner.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Reproducibilidad de los Resultados , Sonido
14.
Anal Chem ; 93(23): 8309-8317, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34075739

RESUMEN

We propose an acoustofluidic method for the triseparation of proteins conjugated with aptamer-coated microparticles inside a microchannel. Traveling surface acoustic waves (TSAWs) produced from a slanted-finger interdigital transducer (SFIT) are used to separate the protein-loaded microparticles of different sizes via the TSAW-driven acoustic radiation force (ARF). The acoustofluidic device consists of an SFIT deposited onto a piezoelectric lithium niobate substrate and a polydimethylsiloxane (PDMS) microfluidic channel on top of the substrate. The TSAWs propagating on the substrate penetrate into the sample fluid flow, where the human protein-conjugated microparticles are suspended, inside the PDMS microchannel. The microparticles are subjected to the TSAW-driven ARF with varying magnitude depending on their size and thus flow along different streamlines, leading to triseparation of the proteins. In this work, we used two different-sized streptavidin-functionalized polystyrene (PS) microparticles to capture two kinds of aptamers (apt15 and aptD17.4), which were labeled with a respective biotin molecule at one end. The biotin ends of the aptamers were attached to the microparticles through streptavidin-biotin linkage, whereas the free ends of the aptamers were used to capture their target proteins of thrombin (th) and immunoglobulin E (IgE). The resultant PS-apt15-th and PS-aptD17.4-IgE complexes, as well as mCardinal2, were used for experimental demonstration of acoustofluidic triseparation of the human proteins. We achieved simultaneous separation of proteins of three kinds (th, IgE, and mCardinal2) for the first time via the TSAW-driven ARF in the proposed acoustofluidic device.


Asunto(s)
Acústica , Microfluídica , Proteínas/aislamiento & purificación , Biotina , Humanos , Poliestirenos , Estreptavidina
15.
ACS Biomater Sci Eng ; 7(3): 1230-1241, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33586426

RESUMEN

Fas ligand (FasL, CD178) is known to bind to its receptor (Fas, CD95) and mediate cellular apoptosis to maintain immune homeostasis. Recently, it has been recognized that tumor cells and their microenvironments allow an adjacent vascular endothelium to express the FasL on its cell membrane, utilizing the endothelium as an immune barrier to kill antitumor cytotoxic T cells. Here, a microfluidic tumor vasculature model is presented, which enables the recapitulation of an endothelial immune barrier expressing FasL. The in vitro three-dimensional model replicates enhanced endothelial FasL expression under the hypoxic tumor microenvironment. Apoptosis rates of FasL-susceptible target cells are augmented under the microenvironment with upregulated FasL but are consequently abrogated by administrations of pharmacological inhibitions, FasL-Fas blockades. The microfluidic system suggests its promising applications in elucidating complex immunosuppressive mechanisms of the tumor microenvironment and screening of cell-mediated immunotherapies as a preclinical model.


Asunto(s)
Microfluídica , Receptor fas , Apoptosis , Proteína Ligando Fas/genética , Neoplasias/irrigación sanguínea , Neovascularización Patológica , Linfocitos T Citotóxicos
16.
Sci Rep ; 11(1): 2262, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500481

RESUMEN

As silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.

17.
Lab Chip ; 21(3): 494-501, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33492325

RESUMEN

Label-free, three-dimensional (3D) quantitative observations of on-chip vasculogenesis were achieved using optical diffraction tomography. Exploiting 3D refractive index maps as an intrinsic imaging contrast, the vascular structures, multicellular activities, and subcellular organelles of endothelial cells were imaged and analysed throughout vasculogenesis to characterise mature vascular networks without exogenous labelling.


Asunto(s)
Células Endoteliales , Tomografía Óptica , Imagenología Tridimensional , Refractometría
18.
Tissue Eng Regen Med ; 18(1): 89-97, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32914287

RESUMEN

BACKGROUND: Sufficient blood supply through neo-vasculature is a major challenge in cell therapy and tissue engineering in order to support the growth, function, and viability of implanted cells. However, depending on the implant size and cell types, the natural process of angiogenesis may not provide enough blood supply for long term survival of the implants, requiring supplementary strategy to prevent local ischemia. Many researchers have reported the methodologies to form pre-vasculatures that mimic in vivo microvessels for implantation to promote angiogenesis. These approaches successfully showed significant enhancement in long-term survival and regenerative functions of implanted cells, yet there remains room for improvement. METHODS: This paper suggests a proof-of-concept strategy to utilize novel scaffolds of dimpled/hollow electrospun fibers that enable the formation of highly mature pre-vasculatures with adequate dimensions and fast degrading in the tissue. RESULT: Higher surface roughness improved the maturity of endothelial cells mediated by increased cell-scaffold affinity. The degradation of scaffold material for functional restoration of the neo-vasculatures was also expedited by employing the hollow scaffold design based on co-axial electrospinning techniques. CONCLUSION: This unique scaffold-based pre-vasculature can hold implanted cells and tissue constructs for a prolonged time while minimizing the cellular loss, manifesting as a gold standard design for transplantable scaffolds.


Asunto(s)
Células Endoteliales , Andamios del Tejido , Microvasos , Ingeniería de Tejidos
19.
Biochim Biophys Acta Gen Subj ; 1865(2): 129796, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33212230

RESUMEN

BACKGROUND: Iron excess is a risk factor for cardiovascular diseases and it is important to understand the effect of iron on vascular permeability, particularly for the transport of large metabolic hormones such as adiponectin. METHODS: We used 2-dimensional monolayers of cultured human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) as well as 3-dimensional microvascular networks to measure transendothelial flux. RESULTS: Iron supplementation reduced transendothelial electric resistance (TEER). Flux analysis indicated that under control conditions permeability of 70 kDa dextran and oligomeric forms of adiponectin were restricted in comparison with a 3 kDa dextran, however upon iron treatment permeability of the larger molecules was increased. The increased permeability and size-dependent trans-endothelial movement in response to iron was also observed in 3-dimensional microvascular networks. Mechanistically, the alteration in barrier functionality was associated with increased oxidative stress in response to iron since alterations in TEER and permeability were rescued when reactive oxygen species production was attenuated by pre-treatment with the antioxidant N-acetyl cysteine.]. CONCLUSIONS: Iron supplementation induced ROS production resulting in increased transendothelial permeability. GENERAL SIGNIFICANCE: Altogether, this suggests that the oxidative stress associated with iron excess could play an important role in the regulation of endothelial functionality, controlling hormone action in peripheral tissues by regulating the first rate-limiting step controlling hormone access to target tissues.


Asunto(s)
Adiponectina/metabolismo , Células Endoteliales/metabolismo , Hierro/metabolismo , Microvasos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Permeabilidad Capilar , Línea Celular , Impedancia Eléctrica , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Dispositivos Laboratorio en un Chip , Microvasos/citología , Permeabilidad
20.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906807

RESUMEN

The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.


Asunto(s)
Nanopartículas del Metal , Células Neoplásicas Circulantes , Espectrometría Raman , Técnicas Biosensibles , Grafito , Humanos , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA