Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
RSC Adv ; 14(25): 18064-18072, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38841393

RESUMEN

Thermoset epoxy resins are widely used in research and commercial applications. Zeolite imidazole framework-8 (ZIF-8), graphitic carbon nitride (GCN, g-C3N4), and S-doped graphitic carbon nitride (SCN, S-g-C3N4) composites were synthesized as accelerators and their effects on the physical properties of epoxies were examined. An ultrasound-assisted method was used to prepare ZIF-8/GCN and ZIF-8/SCN nanocomposites while g-C3N4 and S-g-C3N4 were prepared from the calcination of melamine and thiourea, respectively. The surface morphology, and particle size were characterized by scanning electron microscopy, and X-ray diffraction. The properties of synthesized nanocomposites were measured using Fourier-transform infrared spectroscopy. After the accelerator was added to the epoxy composites, their activation energies were calculated using differential scanning calorimetry. The tensile strength and flexural strength were measured using a universal testing machine and impact strength was measured by using an Izod impact strength tester. The impact strength of ZIF-8/SCN nanocomposites was enhanced by 45.2%. The storage stability of the epoxy compositions with different catalysts was evaluated by measuring the variation of viscosity with time at a constant temperature.

2.
Bioresour Technol ; 373: 128702, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36740100

RESUMEN

Air gasification of the Wood-Plastic Composite (WPC) was performed over Ni-loaded HZSM-5 catalysts to generate H2-rich gas. Increasing SiO2/Al2O3 ratio (SAR) of HZSM-5 adversely affected catalytic activity, where the highest gas yield (51.38 wt%) and H2 selectivity (27.01 vol%) were acquired using 20 %Ni/HZSM-5(30) than those produced over 20 %Ni/HZSM-5(80) and 20 %Ni/HZSM-5(280). Reducing SAR was also favorably conducive to increasing the acyclic at the expense of cyclic compounds in oil products. These phenomena are attributed to enhanced acid strength and Ni dispersion of 20 %Ni/HZSM-5(30) catalyst. Moreover, catalytic activity in the terms of gas yield and H2 selectivity enhanced with growing Ni loading to 20 %. Also, the addition of promoters (Cu and Ca) to 20 %Ni/HZSM-5(30) boosted the catalytic efficiency for H2-rich gas generation. Raising temperature indicated a positive relevance with the gas yield and H2 selectivity. WPC valorization via gasification technology would be an outstanding outlook in the terms of a waste-to-energy platform.


Asunto(s)
Plásticos , Dióxido de Silicio , Madera , Temperatura , Catálisis
3.
Plants (Basel) ; 10(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34451796

RESUMEN

Yams (Dioscorea spp.) are cultivated and consumed as edible tubers, while their leaves are discarded as waste or burned with negative environmental impact. Herein, the metabolites of two yam species (Danma, DAN; Dunggeunma, DUN), harvested in June, July, and August, were profiled using GC-TOF-MS and UHPLC-LTQ-Orbitrap-MS/MS and the antioxidant activity of the extracts was evaluated to stimulate the utilization of yam leaves as a by-product. We observed that the relative levels of amino acids, organic acids, sugars, and saponins decreased linearly with prolonged harvest time, while fatty acid, phenanthrene, and flavonoid levels gradually increased. Furthermore, the leaf extracts obtained in August exhibited the highest antioxidant activity. To determine the antioxidant-contributing metabolites, OPLS-DA was performed for the leaf metabolites of DAN and DUN leaves harvested in August. Hydroxytyrosol-glucoside, apigenin-rhamnoside, and rutin were more abundant in DUN, while luteolin, phenanthrene derivatives, epicatechin, and kaempferide were relatively higher in DAN and their respective metabolites were positively correlated with the antioxidant activity. Moreover, secondary metabolites were more abundant in the leaves than in the roots, and consequently, the antioxidant activity of the former was also higher. Overall, the potential value of yam leaves as a renewable source of bioactive compounds is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA