Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(Supplement_1): i119-i129, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940167

RESUMEN

SUMMARY: Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments. In this paper, we introduce Self-BioRAG, a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses. We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens. Our work proves that domain-specific components, such as a retriever, domain-related document corpus, and instruction sets are necessary for adhering to domain-related instructions. Using three major medical question-answering benchmark datasets, experimental results of Self-BioRAG demonstrate significant performance gains by achieving a 7.2% absolute improvement on average over the state-of-the-art open-foundation model with a parameter size of 7B or less. Similarly, Self-BioRAG outperforms RAG by 8% Rouge-1 score in generating more proficient answers on two long-form question-answering benchmarks on average. Overall, we analyze that Self-BioRAG finds the clues in the question, retrieves relevant documents if needed, and understands how to answer with information from retrieved documents and encoded knowledge as a medical expert does. We release our data and code for training our framework components and model weights (7B and 13B) to enhance capabilities in biomedical and clinical domains. AVAILABILITY AND IMPLEMENTATION: Self-BioRAG is available at https://github.com/dmis-lab/self-biorag.


Asunto(s)
Almacenamiento y Recuperación de la Información , Humanos , Almacenamiento y Recuperación de la Información/métodos , Procesamiento de Lenguaje Natural
2.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261870

RESUMEN

SUMMARY: Biomedical named entity recognition (NER) plays a crucial role in extracting information from documents in biomedical applications. However, many of these applications require NER models to operate at a document level, rather than just a sentence level. This presents a challenge, as the extension from a sentence model to a document model is not always straightforward. Despite the existence of document NER models that are able to make consistent predictions, they still fall short of meeting the expectations of researchers and practitioners in the field. To address this issue, we have undertaken an investigation into the underlying causes of inconsistent predictions. Our research has led us to believe that the use of adjectives and prepositions within entities may be contributing to low label consistency. In this article, we present our method, ConNER, to enhance a label consistency of modifiers such as adjectives and prepositions. By refining the labels of these modifiers, ConNER is able to improve representations of biomedical entities. The effectiveness of our method is demonstrated on four popular biomedical NER datasets. On three datasets, we achieve a higher F1 score than the previous state-of-the-art model. Our method shows its efficacy on two datasets, resulting in 7.5%-8.6% absolute improvements in the F1 score. Our findings suggest that our ConNER method is effective on datasets with intrinsically low label consistency. Through qualitative analysis, we demonstrate how our approach helps the NER model generate more consistent predictions. AVAILABILITY AND IMPLEMENTATION: Our code and resources are available at https://github.com/dmis-lab/ConNER/.


Asunto(s)
Minería de Datos , Lenguaje , Humanos , Minería de Datos/métodos , Investigadores
3.
Bioinformatics ; 38(20): 4837-4839, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36053172

RESUMEN

In biomedical natural language processing, named entity recognition (NER) and named entity normalization (NEN) are key tasks that enable the automatic extraction of biomedical entities (e.g. diseases and drugs) from the ever-growing biomedical literature. In this article, we present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by employing a multi-task NER model and neural network-based NEN models to achieve much faster and more accurate inference. We hope that our tool can help annotate large-scale biomedical texts for various tasks such as biomedical knowledge graph construction. AVAILABILITY AND IMPLEMENTATION: Web service of BERN2 is publicly available at http://bern2.korea.ac.kr. We also provide local installation of BERN2 at https://github.com/dmis-lab/BERN2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Neurales de la Computación , Programas Informáticos , Procesamiento de Lenguaje Natural
4.
Neural Netw ; 153: 104-119, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35716619

RESUMEN

Graph Neural Networks (GNNs) have been widely applied to various fields due to their powerful representations of graph-structured data. Despite the success of GNNs, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. To address these limitations, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which preclude noisy connections and include useful connections (e.g., meta-paths) for tasks, while learning effective node representations on the new graphs in an end-to-end fashion. We further propose enhanced version of GTNs, Fast Graph Transformer Networks (FastGTNs), that improve scalability of graph transformations. Compared to GTNs, FastGTNs are up to 230× and 150× faster in inference and training, and use up to 100× and 148× less memory while allowing the identical graph transformations as GTNs. In addition, we extend graph transformations to the semantic proximity of nodes allowing non-local operations beyond meta-paths. Extensive experiments on both homogeneous graphs and heterogeneous graphs show that GTNs and FastGTNs with non-local operations achieve the state-of-the-art performance for node classification tasks. The code is available: https://github.com/seongjunyun/Graph_Transformer_Networks.


Asunto(s)
Aprendizaje , Redes Neurales de la Computación , Semántica
5.
J Assoc Inf Sci Technol ; 73(8): 1065-1078, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35441082

RESUMEN

Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.

6.
Sci Data ; 7(1): 205, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591513

RESUMEN

PubMed® is an essential resource for the medical domain, but useful concepts are either difficult to extract or are ambiguous, which has significantly hindered knowledge discovery. To address this issue, we constructed a PubMed knowledge graph (PKG) by extracting bio-entities from 29 million PubMed abstracts, disambiguating author names, integrating funding data through the National Institutes of Health (NIH) ExPORTER, collecting affiliation history and educational background of authors from ORCID®, and identifying fine-grained affiliation data from MapAffil. Through the integration of these credible multi-source data, we could create connections among the bio-entities, authors, articles, affiliations, and funding. Data validation revealed that the BioBERT deep learning method of bio-entity extraction significantly outperformed the state-of-the-art models based on the F1 score (by 0.51%), with the author name disambiguation (AND) achieving an F1 score of 98.09%. PKG can trigger broader innovations, not only enabling us to measure scholarly impact, knowledge usage, and knowledge transfer, but also assisting us in profiling authors and organizations based on their connections with bio-entities.


Asunto(s)
Autoria , Bases del Conocimiento , PubMed , Aprendizaje Profundo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA