Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 23(24): 11763-11770, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38100381

RESUMEN

Understanding the phonon characteristics of two-dimensional (2D) molybdenum ditelluride (MoTe2) under strain is critical to manipulating its multiphysical properties. Although there have been numerous computational efforts to elucidate the strain-coupled phonon properties of monolayer MoTe2, empirical validation is still lacking. In this work, monolayer 1H-MoTe2 under uniaxial strain is studied via in situ micro-Raman spectroscopy. Directionally dependent monotonic softening of the doubly degenerate in-plane E2g1 phonon mode is observed with increasing uniaxial strain, where the E2g1 peak red-shifts -1.66 ± 0.04 cm-1/% along the armchair direction and -0.80 ± 0.07 cm-1/% along the zigzag direction. The corresponding Grüneisen parameters are calculated to be 1.09 and 0.52 along the armchair and zigzag directions, respectively. This work provides the first empirical quantification and validation of the orientation-dependent strain-coupled phonon response in monolayer 1H-MoTe2 and serves as a benchmark for other prototypical 2D transition-metal tellurides.

2.
Nat Commun ; 14(1): 1891, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045823

RESUMEN

The generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS2 monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons. These significantly increase the electrons and efficiently funnel excitons in the lateral MIM waveguide, facilitating complete exciton-to-trion conversion even at ambient conditions. Additionally, we modulate the SPP mode using adaptive wavefront shaping, enabling all-optical control of the exciton-to-trion conversion rate and trion distribution in a reversible manner. Our work provides a platform for harnessing excitonic quasiparticles efficiently in the form of trions at ambient conditions, enabling high-efficiency photoconversion.

3.
Nanoscale Adv ; 5(8): 2271-2279, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37056614

RESUMEN

Manipulating the surface chemistry of graphene is critical to many applications that are achievable by chemical functionalization. Specifically, tailoring the spatial distribution of functional groups offers more opportunities to explore functionality using continuous changes in surface energy. To this end, careful consideration is required to demonstrate the chemical gradient on graphene surfaces, and it is necessary to develop a technique to pattern the spatial distribution of functional groups. Here, we demonstrate the tailoring of a chemical gradient through direct mechanochemical cleavage of atoms from chemically functionalized graphene surfaces via an atomic force microscope. Additionally, we define the surface characteristics of the fabricated sample by using lateral force microscopy revealing the materials' intrinsic properties at the nanoscale. Furthermore, we perform the cleaning process of the obtained lateral force images by using a machine learning method of truncated singular value decomposition. This work provides a useful technique for many applications utilizing continuous changes in the surface energy of graphene.

4.
MRS Adv ; 5(56): 2889-2906, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33437534

RESUMEN

State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA