Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Circulation ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229700

RESUMEN

BACKGROUND: Renal denervation (RDN) can lower blood pressure (BP) in patients with hypertension in both the presence and absence of medication. This is the first sham-controlled trial investigating the safety and efficacy of RDN in China. METHODS: This prospective, multicenter, randomized, patient- and outcome-assessor-blinded, sham-controlled trial investigated radiofrequency RDN in patients with hypertension on standardized triple antihypertensive therapy. Eligible patients were randomized 1:1 to undergo RDN using a multi-electrode radiofrequency catheter (Iberis; AngioCare, Shanghai, China) or a sham procedure. The primary efficacy outcome was the between-group difference in baseline-adjusted change in mean 24-hour ambulatory systolic BP from randomization to 6 months. RESULTS: Of 217 randomized patients (mean age, 45.3±10.2 years; 21% female), 107 were randomized to RDN and 110 were randomized to sham control. At 6 months, there was a greater reduction in 24-hour systolic BP in the RDN (-13.0±12.1 mm Hg) compared with the sham control group (-3.0±13.0 mm Hg; baseline-adjusted between-group difference, -9.4 mm Hg [95% CI, -12.8 to -5.9]; P<0.001). Compared with sham, 24-hour diastolic BP was lowered by -5.0 mm Hg ([95% CI, -7.5 to -2.4]; P<0.001) 6 months after RDN, and office systolic and diastolic BP was lowered by -6.4 mm Hg ([95% CI, -10.5 to -2.3]; P=0.003) and -5.1 mm Hg ([95% CI, -8.2 to -2.0]; P=0.001), respectively. One patient in the RDN group experienced an access site complication (hematoma), which resolved without sequelae. No other major device- or procedure-related safety events occurred through follow-up. CONCLUSIONS: In this trial of Chinese patients with uncontrolled hypertension on a standardized triple pharmacotherapy, RDN was safe and reduced ambulatory and office BP at 6 months compared with sham. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT02901704.

2.
Lancet ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39236727

RESUMEN

BACKGROUND: The long-term impact of drug-coated balloon (DCB) angioplasty for the treatment of patients with de novo coronary artery lesions remains uncertain. We aimed to assess the non-inferiority of DCB angioplasty with rescue stenting to intended drug-eluting stent (DES) deployment for patients with de novo, non-complex coronary artery lesions. METHODS: REC-CAGEFREE I was an open-label, randomised, non-inferiority trial conducted at 43 sites in China. After successful lesion pre-dilatation, patients aged 18 years or older with de novo, non-complex coronary artery disease (irrespective of target vessel diameter) and an indication for percutaneous coronary intervention were randomly assigned (1:1), via a web-based centralised system with block randomisation (block size of two, four, or six) and stratified by site, to paclitaxel-coated balloon angioplasty with the option of rescue stenting due to an unsatisfactory result (DCB group) or intended deployment of second-generation thin-strut sirolimus-eluting stents (DES group). The primary outcome was the device-oriented composite endpoint (DoCE; including cardiovascular death, target vessel myocardial infarction, and clinically and physiologically indicated target lesion revascularisation) assessed at 24 months in the intention-to-treat (ITT) population (ie, all participants randomly assigned to treatment). Non-inferiority was established if the upper limit of the one-sided 95% CI for the absolute risk difference was smaller than 2·68%. Safety was assessed in the ITT population. This study is registered with ClinicalTrials.gov, NCT04561739. It is closed to accrual and extended follow-up is ongoing. FINDINGS: Between Feb 5, 2021, and May 1, 2022, 2272 patients were randomly assigned to the DCB group (1133 [50%]) or the DES group (1139 [50%]). Median age at the time of randomisation was 62 years (IQR 54-69), 1574 (69·3%) of 2272 were male, 698 (30·7%) were female, and all patients were of Chinese ethnicity. 106 (9·4%) of 1133 patients in the DCB group received rescue DES after unsatisfactory DCB angioplasty. As of data cutoff (May 1, 2024), median follow-up was 734 days (IQR 731-739). At 24 months, the DoCE occurred in 72 (6·4%) of 1133 patients in the DCB group and 38 (3·4%) of 1139 in the DES group, with a risk difference of 3·04% in the cumulative event rate (upper boundary of the one-sided 95% CI 4·52; pnon-inferiority=0·65; two-sided 95% CI 1·27-4·81; p=0·0008); the criterion for non-inferiority was not met. During intervention, no acute vessel closures occurred in the DCB group and one (0·1%) of 1139 patients in the DES group had acute vessel closure. Periprocedural myocardial infarction occurred in ten (0·9%) of 1133 patients in the DCB group and nine (0·8%) in the DES group. INTERPRETATION: In patients with de novo, non-complex coronary artery disease, irrespective of vessel diameter, a strategy of DCB angioplasty with rescue stenting did not achieve non-inferiority compared with the intended DES implantation in terms of the DoCE at 2 years, which indicates that DES should remain the preferred treatment for this patient population. FUNDING: Xijing Hospital and Shenqi Medical. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

3.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1681-1688, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235027

RESUMEN

Rhizosphere is a vital area for substance exchange and energy transfer between roots and soil microorganisms. Therefore, diazotrophs in the rhizosphere play a pivotal role in facilitating plant nitrogen acquisition. We investigated the variability in the abundance and community structure of soil diazotrophs and the influencing factors across rhizosphere soils of Cunninghamia lanceolata in three locations: Baisha State-owned Forest Farm in Longyan City (BS), Sanming Forest Ecosystem and Global Change Research Station (SM), and Wuyishan National Forest Park in Nanping City (WYS), located in the western region of Fujian Province, quantified the diazotrophic abundance by using real-time quantitative PCR, and assessed the community structure by high-throughput sequencing. The results showed that soil pH, C:N ratio, and C:(N:P) stoichiometry in SM were notably lower compared to those in BS and WYS. In SM, the abundance of the nifH gene was 6.38×108 copies·g-1, significantly lower than 1.35×109 copies·g-1 in BS and 1.10×109 copies·g-1 in WYS. Additionally, α diversity index of diazotrophs was lower in SM compared to BS and WYS, while the community structure of diazotrophs in rhizosphere soils of BS and WYS was similar, which differed significantly from that in SM. The diazotrophic sequences in the three forest farms could be divided into 5 phylum, 8 classes, 15 orders, 23 families and 33 genera, with Proteobacteria, α-proteobacteria, and Bradyrhizobium as the dominant phylotypes. Soil pH, available phosphorus, NO3--N and C:(N:P) ratio were identified as significant factors influencing both the abundance and community structure of nifH genes, with soil pH performing the greatest. Taken together, there were spatial variations in the distribution of diazotrophic abundance and community structure in C. lanceolata rhizosphere soils, with soil pH as the primary driving factor.


Asunto(s)
Cunninghamia , Rizosfera , Microbiología del Suelo , Cunninghamia/crecimiento & desarrollo , China , Suelo/química , Nitrógeno/análisis , Nitrógeno/metabolismo , Fijación del Nitrógeno , Bacterias Fijadoras de Nitrógeno/metabolismo , Bacterias Fijadoras de Nitrógeno/clasificación , Bacterias Fijadoras de Nitrógeno/aislamiento & purificación , Bacterias Fijadoras de Nitrógeno/genética , Clima Tropical
4.
Huan Jing Ke Xue ; 45(8): 4915-4922, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168707

RESUMEN

Microorganisms produce extracellular enzymes to meet elemental requirements and cope with stoichiometric imbalances of resources. To gain insights into the cycling of C, N, and P, the activities of the C∶N∶P acquisition enzymes have been extensively investigated. To detect the effects of long-term fertilization practices on soil nutrient balance and characteristics of soil enzymatic stoichiometry in black soil, four different fertilization treatments were selected: no fertilization (CK), nitrogen fertilizer (N), phosphorus fertilizer (P), and combination of nitrogen and phosphorus fertilizers (NP). Soil samples were collected in both April 2021 and April 2022 to determine soil enzyme activities and their stoichiometric characteristics. The results showed that soil acid phosphatase and ß-D-glucosidase activities were significantly higher in the N and NP treatments than in CK by 68%-158% and 26%-222%, respectively. Soil ß-N-acetylaminoglucosidase activities were significantly higher in the P and NP treatments, with the highest around 75.48 nmol·ï¼ˆg·h)-1 and 106.81 nmol·ï¼ˆg·h)-1, respectively. Two-way ANOVA analysis showed that N and P inputs had a great impact on soil enzyme activities. Redundancy analysis showed that the main factors controlling enzyme activities were soil pH, microbial biomass phosphorus, and soil available P content. It was found that N inputs significantly increased enzyme vector length, which was ranged from 1.32 to 1.52, and the enzyme vector angles were all larger than 45°, suggesting C and P co-limited in the black soils. These findings suggest that 40 years of fertilization have had a great impact on soil enzymes and the related resource use strategy, which provides great implications for assessing soil nutrients balance and soil sustainability.


Asunto(s)
Fertilizantes , Nitrógeno , Fósforo , Microbiología del Suelo , Suelo , Suelo/química , Fósforo/análisis , Fosfatasa Ácida/metabolismo , Carbono/análisis , Factores de Tiempo , China
5.
Environ Int ; 191: 108953, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39153385

RESUMEN

Land use conversion in estuary wetlands may affect the transmission of antibiotic resistance genes (ARGs), while the risk rank of the ARGs and the change of clinically relevant ARGs under various land-use types are not well understood. This study used metagenomics to reveal the diversity and abundance of ARGs across five distinct land uses: reed wetland, tidal flat, grassland, agricultural land and fallow land, as well as their distribution and potential health risks. Results showed that high numbers of ARG subtypes and classes were detected irrespective of land-use types, notably higher in agricultural land (144 ARG subtypes). The most shared ARG subtypes were multidrug resistance genes across all the land uses (29 subtypes, 4.7 × 10-2-1.5 × 10-1 copies per 16S rRNA gene copy). Proteobacteria and Actinobacteria were primary ARG hosts, with 18 and 15 ARGs were found in both of them, respectively. The ARG subtype mdtB was the most dominant clinical ARG detected with 90 % amino acid identity. The change of ARGs exhibited a consistent trend across land uses in terms of health risk ranks, with the highest observed in fallow land and the lowest in reed wetland. This study reveals the distribution pattern of ARGs across various land-use types, and enhances our understanding of the potential health risks associated with ARGs in the context of coastal wetland conversion in estuary areas.

6.
Water Res ; 261: 122011, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959654

RESUMEN

The presence of "viable but nonculturable" (VBNC) state and bacterial antibiotic resistance (BAR) both pose significant threats to the safety of drinking water. However, limited data was available that explicitly addressed the contribution of bacterial VBNC state in the maintenance and propagation of BAR. Here, the VBNC state induction and resuscitation of two antibiotic-resistant Escherichia coli K12 strains, one carrying multidrug-resistant plasmid (RP4 E. coli) and the other with chromosomal mutation (RIF E. coli) were characterized by subjecting them to different doses of UV/chlorine. The results illustrated that the induction, resuscitation, and associated mechanisms of VBNC ARB exhibit variations based on resistance determinants. RP4 E. coli exhibited a higher susceptibility to enter VBNC state compared to the RIF E. coli., and most VBNC state and resuscitated RP4 E. coli retained original antibiotic resistance. While, reverse mutation in the rpoB gene was observed in VBNC state and recovered RIF E. coli strains induced by high doses of UV/chlorine treatment, leading to the loss of rifampicin resistance. According to RT-qPCR results, ARGs conferring efflux pumps appeared to play a more significant role in the VBNC state formation of RP4 E. coli and the down-regulation of rpoS gene enhanced the speed at which this plasmid-carrying ARB entered into the dormant state. As to RIF E. coli, the induction of VBNC state was supposed to be regulated by the combination of general stress response, SOS response, stringent response, and TA system. Above all, this study highlights that ARB could become VBNC state during UV/chlorine treatments and retain, in some cases, their ability to spread ARGs. Importantly, compared with chromosomal mutation-mediated ARB, both VBNC and resuscitated state ARB that carries multidrug-resistant plasmids poses more serious health risks. Our study provides insights into the relationship between the VBNC state and the propagation of BAR in drinking water systems.


Asunto(s)
Cloro , Escherichia coli , Rayos Ultravioleta , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Cloro/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Plásmidos , Proteínas de Escherichia coli/genética , Mutación , Viabilidad Microbiana
7.
Sci Total Environ ; 947: 174594, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992349

RESUMEN

During the recent times, environmental antibiotic resistance genes (ARGs) and their potential transfer to other bacterial hosts of pathogenic importance are of serious concern. However, the dissemination strategies of such ARGs are largely unknown. We tested that saprotrophic soil fungi differentially enriched antibiotic resistant bacteria (ARBs) and subsequently contributed in spatial distribution of selective ARGs. Wafergen qPCR analysis of 295 different ARGs was conducted for manure treated pre-sterilized soil incubated or not with selected bacterial-fungal consortia. The qPCR assay detected unique ARGs specifically found in the mycosphere of ascomycetous and basidiomycetous fungi. Both fungi exerted potentially different selection pressures on ARBs, resulting in different patterns of ARGs dissemination (to distant places) along their respective growing fungal highways. The relative abundance of mobile genetic elements (MGEs) was significantly decreased along fungal highways compared to the respective inoculation points. Moreover, the decrease in MGEs and ARGs (along fungal highways) was more prominent over time which depicts the continuous selection pressure of growing fungi on ARBs for enrichment of particular ARGs in mycosphere. Such data also indicate the potential role of saprotrophic soil fungi to facilitate horizontal gene transfer within mycospheric environmental settings. Our study, therefore, advocates to emphasize the future investigations for such (bacteria-fungal) interactive microbial consortia for potential (spatial) dissemination of resistance determinants which may ultimately increase the exposure risks of ARGs.


Asunto(s)
Hongos , Microbiología del Suelo , Hongos/fisiología , Bacterias/efectos de los fármacos , Suelo/química , Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal
8.
Heliyon ; 10(11): e31101, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828306

RESUMEN

Despite increasing global attention towards sustainable development, the empirical linkage between green financing and the enhancement of environmental and social governance (ESG) practices within industries remains underexplored. This study investigates the influence of green financing on Corporate Social Responsibility (CSR) and environmental policies and procedures in 40 Chinese industries from 2010 to 2020. By employing a baseline regression and a difference-in-differences methodology, this paper aims to quantify the extent to which green financing initiatives have impacted CSR activities and the adoption of rigorous environmental policies and procedures in the Chinese industrial sector. The results indicate that industries with access to green financing have shown significant improvements in their CSR engagements and the stringency of their environmental policies and procedures compared to those without such financial incentives. Specifically, the difference-in-differences analysis reveals a positive and statistically significant effect of green financing on the adoption of more stringent environmental policies and the enhancement of CSR practices. We identify the specific areas within CSR and environmental policies that are most influenced by green financing. We assess the effectiveness of green financing as a tool for promoting sustainable industrial practices. The analysis utilizes a comprehensive dataset, including industry-specific financing and ESG performance indicators, to conduct a longitudinal assessment over the decade in question. Based on these findings, the study concludes with a policy implication that emphasizes the critical role of green financing as a catalyst for improving CSR and environmental standards in industries. It suggests that policymakers and financial institutions should consider expanding green financing mechanisms to accelerate the transition towards more sustainable industrial practices.

9.
Sci Total Environ ; 943: 173831, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866152

RESUMEN

The plant microbiome plays a crucial role in facilitating plant growth through enhancing nutrient cycling, acquisition and transport, as well as alleviating stresses induced by nutrient limitations. Despite its significance, the relative importance of common agronomic practices, such as nitrogenous fertilizer, in shaping the plant microbiome across different cultivars remains unclear. This study investigated the dynamics of bacterial and fungal communities in leaf, root, rhizosphere, and bulk soil in response to nitrogenous fertilizer across ten sorghum varieties, using 16S rRNA and ITS gene amplicon sequencing, respectively. Our results revealed that nitrogen addition had a greater impact on sorghum-associated microbial communities compared to cultivar. Nitrogen addition significantly reduced bacterial diversity in all compartments except for the root endophytes. However, N addition significantly increased fungal diversity in both rhizosphere and bulk soils, while significantly reducing fungal diversity in the root endophytes. Furthermore, N addition significantly altered the community composition of bacteria and fungi in all four compartments, while cultivars only affected the community composition of root endosphere bacteria and fungi. Network analysis revealed that fertilization significantly reduced microbial network complexity and increased fungal-related network complexity. Collectively, this study provides empirical evidence that sorghum-associated microbiomes are predominantly shaped by nitrogenous fertilizer rather than by cultivars, suggesting that consistent application of nitrogenous fertilizer will ultimately alter plant-associated microbiomes regardless of cultivar selection.


Asunto(s)
Fertilizantes , Microbiota , Nitrógeno , Microbiología del Suelo , Sorghum , Sorghum/microbiología , Nitrógeno/análisis , Bacterias/clasificación , Hongos/fisiología , Rizosfera , ARN Ribosómico 16S , Raíces de Plantas/microbiología
10.
Sci Total Environ ; 931: 172951, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703838

RESUMEN

Micro-/nanoplastic contamination in agricultural soils raises concerns on agroecosystems and poses potential health risks. Some of agricultural soils have received significant amounts of micro-/nanoplastics (MNPs) through plastic mulch film and biosolid applications. However, a comprehensive understanding of the MNP impacts on soils and plants remains elusive. The interaction between soil particles and MNPs is an extremely complex issue due to the different properties and heterogeneity of soils and the diverse characteristics of MNPs. Moreover, MNPs are a class of relatively new anthropogenic pollutants that may negatively affect plants and food. Herein, we presented a comprehensive review of the impacts of MNPs on the properties of soil and the growth of plants. We also discussed different strategies for mitigating or eliminating MNP contamination. Moreover, perspectives for future research on MNP contamination in the agricultural soils are also highlighted.

11.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691934

RESUMEN

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Asunto(s)
Biodegradación Ambiental , Glucolípidos , Oxigenasas de Función Mixta , Petróleo , Tensoactivos , Petróleo/metabolismo , Tensoactivos/metabolismo , Tensoactivos/química , Glucolípidos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Alcanos/metabolismo
12.
Heliyon ; 10(9): e30147, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756613

RESUMEN

The Green Economy Initiative aims to achieve economic development while minimizing carbon emissions by implementing a low-carbon economy across all sectors. It is noteworthy that ships play a significant role in global commodity transportation, accounting for approximately 80-90 percent. However, this also leads to a surge in fossil fuel consumption and alarming pollution levels. The data utilized in this article spans from 2010 to 2022 and specifically focuses on the shipping industry, drawing from information collected in 20 different provinces of China. Multiple panel regression models were constructed to analyze the influence of fiscal policies on facilitating the transition toward a low-carbon economy. In addition, a vector autoregression model was employed to examine the interconnected dynamics between low-carbon transition and budgetary guidelines. The findings indicate that tax-based policies demonstrate an inverted U-shaped relationship with low-carbon transition, whereas transfer payment policies exhibit an N-shaped pattern. The shipping sector is actively embracing low-carbon practices, largely due to incorporating digital technologies that mitigate the adverse impacts of fiscal regulations.

13.
BMC Urol ; 24(1): 89, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632572

RESUMEN

•we report the case of a 36-year-old female patient who presented to our hospital with a diagnosis of cystitis glandularis manifesting as a vesicovaginal fistula. She underwent cystoscopic biopsy at a local hospital, but anti-inflammatory treatment was ineffective, and the patient was experiencing low urination frequency and urgency, as well as pain. The patient underwent laparoscopic repair of a cystoscopy-confirmed vesicovaginal fistula. After surgery, the patient experienced a paroxysm of Crohn's disease with multiple small bowel fistulas and erosion of the external iliac vessels that ruptured to form an external iliac vessel small bowel fistula. The fistula was confirmed by surgical exploration, and the patient eventually died.


Asunto(s)
Enfermedad de Crohn , Cistitis , Fístula Intestinal , Fístula Vesicovaginal , Femenino , Humanos , Adulto , Enfermedad de Crohn/complicaciones , Fístula Vesicovaginal/complicaciones , Fístula Intestinal/cirugía , Abdomen , Cistitis/complicaciones
14.
Sci Rep ; 14(1): 9800, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684705

RESUMEN

With the rapid advancement of urbanization and industrialization, ecological patches within cities and towns are fragmented and ecological corridors are cut off, regional ecological security is threatened and sustainable development is hindered. Building an ecological network that conforms to regional realities can connect fragmented patches, protect biodiversity and regional characteristics, and provide scientific reference for regional ecological protection and ecological network planning. By taking Qilin District, the main urban area of Qujing City as an example, and using geospatial data as the main data source, based on morphological spatial pattern analysis (MSPA) and minimum cumulative resistance (MCR), this study identified ecological source areas, extracted ecological corridors, and build & optimize ecological networks. (1) All landscape types are identified based on MSPA, the proportion of core area was the highest among all landscape types, which was 80.69%, combined with the connectivity evaluation, 14 important ecological source areas were selected. (2) 91 potential ecological corridors were extracted through MCR and gravity models, there were 16 important ones. (3) The network connectivity analysis method is used to calculate the α, ß, and γ indexes of the ecological network before optimization, which were 2.36, 6.5, and 2.53, while after optimization, α, ß and γ indices were 3.8, 9.5 and 3.5, respectively. The combined application of MSPA-MCR model and ecological network connectivity analysis evaluation is conducive to improving the structure and functionality of ecological network.

15.
Clin Hemorheol Microcirc ; 87(4): 437-450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489169

RESUMEN

BACKGROUND: At present, most articles mainly focused on the diagnosis of thyroid nodules by using artificial intelligence (AI), and there was little research on the detection performance of AI in thyroid nodules. OBJECTIVE: To explore the value of a real-time AI based on computer-aided diagnosis system in the detection of thyroid nodules and to analyze the factors influencing the detection accuracy. METHODS: From June 1, 2022 to December 31, 2023, 224 consecutive patients with 587 thyroid nodules were prospective collected. Based on the detection results determined by two experienced radiologists (both with more than 15 years experience in thyroid diagnosis), the detection ability of thyroid nodules of radiologists with different experience levels (junior radiologist with 1 year experience and senior radiologist with 5 years experience in thyroid diagnosis) and real-time AI were compared. According to the logistic regression analysis, the factors influencing the real-time AI detection of thyroid nodules were analyzed. RESULTS: The detection rate of thyroid nodules by real-time AI was significantly higher than that of junior radiologist (P = 0.013), but lower than that of senior radiologist (P = 0.001). Multivariate logistic regression analysis showed that nodules size, superior pole, outside (near carotid artery), close to vessel, echogenicity (isoechoic, hyperechoic, mixed-echoic), morphology (not very regular, irregular), margin (unclear), ACR TI-RADS category 4 and 5 were significant independent influencing factors (all P < 0.05). With the combination of real-time AI and radiologists, junior and senior radiologist increased the detection rate to 97.4% (P < 0.001) and 99.1% (P = 0.015) respectively. CONCLUSONS: The real-time AI has good performance in thyroid nodule detection and can be a good auxiliary tool in the clinical work of radiologists.


Asunto(s)
Inteligencia Artificial , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/diagnóstico , Nódulo Tiroideo/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios Prospectivos , Anciano , Diagnóstico por Computador/métodos
16.
mSystems ; 9(4): e0105523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38501864

RESUMEN

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with Methylobacterium, Azospirillum, Bradyrhizobium, and Rhizobium. Furthermore, eight dominant taxa belonging to Azospirillum and Methylobacterium were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to Pseudomonas mendocina. Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.


Asunto(s)
Microbiota , Microbiota/genética , Agricultura , Suelo/química , Nitrógeno/análisis , Productos Agrícolas/metabolismo , Desarrollo de la Planta
17.
BMC Urol ; 24(1): 49, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429701

RESUMEN

PURPOSE: The aim of the present study was to investigate the relationships between fear of cancer recurrence and quality of life in patients with prostate cancer. A model based on Lazarus' and Folkman's theory tested the specific hypothesis: fear of cancer recurrence has a direct and indirect effect on quality of life mediated by coping strategies. METHODS: A questionnaire survey was conducted on 305 patients with prostate cancer who underwent radical surgery, including demographic information, FoP-Q-SF (Fear of Progression Questionnaire), MCMQ (The Medical Coping Modes Questionnaire), QLQ-C30 (Questionnaire for Quality of Life Assessment in patients with cancer, version 3.0), and a mediator model was tested using the PROCESS macro for SPSS. RESULTS: The total FoP-Q-SF score of 305 postoperative prostate cancer patients was 34.3 ± 5.856, with approximately 41.6% of the patients scoring higher than 34. There were significant indirect effects of fear of cancer recurrence on global health status through face [a1b1; 0.0394, Boot CIs 0.0025, 0.0819] and yield [a3b3; -0.1075, Boots CIs - 0.1657, -0.0557] but not for evasive [a2b2; 0.0235; Boots CIs - 0.057, 0.0508]. CONCLUSIONS: Coping strategies are the most important mediating factors between fear of cancer recurrence and QOL among patients with prostate cancer. Our results support the proposed conceptual model, based on Lazarus' and Folkman's theory. Medical personnel need to develop corresponding intervention measures based on the different coping methods of patients, promote disease recovery, and improve postoperative quality of life.


Asunto(s)
Neoplasias de la Próstata , Calidad de Vida , Masculino , Humanos , Habilidades de Afrontamiento , Miedo , Neoplasias de la Próstata/cirugía , Encuestas y Cuestionarios
18.
ISME Commun ; 4(1): ycae017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38481578

RESUMEN

Recent metagenomic advancements have offered unprecedented insights into soil viral ecology. However, it remains a challenge to select the suitable metagenomic method for investigating soil viruses under different environmental conditions. Here, we assessed the performance of viral size-fraction metagenomes (viromes) and total metagenomes in capturing viral diversity from hypersulfidic soils with neutral pH and sulfuric soils with pH <3.3. Viromes effectively enhanced the sequencing coverage of viral genomes in both soil types. Viomes of hypersulfidic soils outperformed total metagenomes by recovering a significantly higher number of viral operational taxonomic units (vOTUs). However, total metagenomes of sulfuric soils recovered ~4.5 times more vOTUs than viromes on average. Altogether, our findings suggest that the choice between viromes and total metagenomes for studying soil viruses should be carefully considered based on the specific environmental conditions.

19.
J Environ Manage ; 356: 120544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471323

RESUMEN

Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and ß-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.


Asunto(s)
Antibacterianos , Agua Potable , Antibacterianos/farmacología , Antibacterianos/análisis , Genes Bacterianos , Antagonistas de Receptores de Angiotensina/análisis , Nitritos/análisis , Farmacorresistencia Microbiana/genética , Inhibidores de la Enzima Convertidora de Angiotensina/análisis , Nitrógeno/análisis
20.
Biosens Bioelectron ; 254: 116201, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38507928

RESUMEN

Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 µM (PEC) and 0.1 nM to 0.5 µM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.


Asunto(s)
Técnicas Biosensibles , Polímeros Impresos Molecularmente , Colorimetría/métodos , Peroxidasa/química , Peroxidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA