Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Light Sci Appl ; 12(1): 79, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977672

RESUMEN

Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light, demonstrating great potential in high-capacity information technologies. The orbital angular momentum (OAM) and spin angular momentum (SAM) dimensions have been respectively explored as the independent carrier for information multiplexing. However, fully managing these two intrinsic properties in information multiplexing remains elusive. Here, we propose the concept of angular momentum (AM) holography which can fully synergize these two fundamental dimensions to act as the information carrier, via a single-layer, non-interleaved metasurface. The underlying mechanism relies on independently controlling the two spin eigenstates and arbitrary overlaying them in each operation channel, thereby spatially modulating the resulting waveform at will. As a proof of concept, we demonstrate an AM meta-hologram allowing the reconstruction of two sets of holographic images, i.e., the spin-orbital locked and the spin-superimposed ones. Remarkably, leveraging the designed dual-functional AM meta-hologram, we demonstrate a novel optical nested encryption scheme, which is able to achieve parallel information transmission with ultra-high capacity and security. Our work opens a new avenue for optionally manipulating the AM, holding promising applications in the fields of optical communication, information security and quantum science.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770401

RESUMEN

Mid-infrared large field-of-view (FOV) imaging optics play a vital role in infrared imaging and detection. The metalens, which is composed of subwavelength-arrayed structures, provides a new possibility for the miniaturization of large FOV imaging systems. However, the inaccuracy during fabrication is the main obstacle to developing practical uses for metalenses. Here, we introduce the principle and method of designing a large FOV doublet metalens at the mid-infrared band. Then, the quantitative relationship between the fabrication error and the performance of the doublet metalens with a large FOV from four different fabrication errors is explored by using the finite-difference time-domain method. The simulation results show that the inclined sidewall error has the greatest impact on the focusing performance, and the interlayer alignment error deforms the focusing beam and affects the focusing performance, while the spacer thickness error has almost no impact on the performance. The contents discussed in this paper can help manufacturers determine the allowable processing error range of the large FOV doublet metalens and the priority level for optimizing the process, which is of significance.

3.
Nano Lett ; 22(24): 10049-10056, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36473130

RESUMEN

Tunable metasurfaces provide a compact and efficient strategy for optical active wavefront shaping. Varifocal metalens is one of the most important applications. However, the existing tunable metalens rarely serves broadband wavelengths restricting their applications in broadband imaging and color display due to chromatic aberration. Herein, an electrically tunable polarization-multiplexed achromatic metalens integrated with twisted nematic liquid crystals (TNLCs) in the visible region is demonstrated. The phase profiles at different wavelengths under two orthogonal polarization channels are customized by the particle swarm optimization algorithm and matched with the dielectric metaunits database to achieve polarization-multiplexed achromatic performance. By combining the broadband linear polarization conversion ability of TNLC, the tunability of varifocal achromatic metalens is realized by applying different voltages. Further, the electrically tunable customized dispersion-manipulated metalens and switchable color metaholograms are demonstrated. The proposed devices will accelerate the application of metasurfaces in broadband zoom imaging, AR/VR displays and spectral detection.

4.
J Opt Soc Am A Opt Image Sci Vis ; 30(11): 2286-90, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24322927

RESUMEN

Retroreflective free-space optical communication is important because of advantages such as small volume, low weight, and low power consumption. Link failure caused by bad weather conditions will occur because of the attenuated retroreflective signal and the increased scattering of the transmitted light. The scattering effect can be reduced because the physical properties (including polarization, wavefront, and phase) of the scattering signal are different from those of the retroreflective signal. The physical properties of the scattering signal are obtained using a polarization-sensitive Monte Carlo model, and the heterodyning scattering signal is obtained using heterodyning theory. Results show that, with optical heterodyning, the scattering effect is efficiently reduced, and advantages such as better adaptability to bad weather conditions, longer communication range, more compact transceiver design, larger covering area of the optical receiver, and easier target acquisition for the retromodulator than before can also be obtained.

5.
Appl Opt ; 51(35): 8366-72, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23262531

RESUMEN

This paper investigates characteristics of polarization in non-line-of-sight (NLOS) ultraviolet (UV) communication channels based on a vectorized polarization-sensitive model of NLOS multiple-scatter propagation. The degree of polarization has been analyzed from the following factors: elevation angles, beam angle, field-of-view, off-axis angles, and baseline distance, etc. We draw conclusions that will guide the design of polarization multiplexing technology in NLOS UV communication systems. Outdoor experimentation has validated that this technology is useful to improve the data rate.

6.
J Opt Soc Am A Opt Image Sci Vis ; 29(12): 2608-11, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455910

RESUMEN

Retroreflective free-space optical (RFSO) communication is a new concept of optical communication; it consists of an optical transceiver and a retromodulator and has advantages such as light weight, small volume, and low power consumption. The power captured by the receiver consists of two parts: retroreflective and scattering. The retroreflective characteristics are obtained using an analytical formula, the scattering characteristics using a Monte Carlo model. Results show that the scattering power plays an important role in a RFSO communication link, especially when the communication range is long or the meteorological range is short. Some rules are also obtained for the sake of system design, which include increasing the range from the transmitter and the receiver properly, increasing the area of the retromodulator, limiting the field of view of the receiver, and limiting the beam divergence of the transmitter.

7.
Opt Express ; 19(22): 21216-26, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22108974

RESUMEN

This paper studies the effects of the obstacle on non-line-of-sight ultraviolet communication links using multiple-scatter model based on a Monte Carlo method. On the condition that transmitter beam and receiver FOV just pass the top of the obstacle, and ranges is fixed, the received energy density is at its maximum. The path loss increases when the transmitter or the receiver is much near to the obstacle, because the nearby common scattering volumes decrease intensively. The optimal received range decreases with the increasing of the distance between transmitter and obstacle. The predictions are validated with experimental measurements. This work can be used for the guidance of UV system design and network technology to apply in complex surroundings, such as mountain, buildings, etc.

8.
J Opt Soc Am A Opt Image Sci Vis ; 28(10): 2082-5, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21979512

RESUMEN

The existing Monte-Carlo-based non-line-of-sight (NLOS) multiple-scatter propagation model is extended to include polarization and also vectorized to improve the simulation speed by about 500 times. This model is validated by the noncoplanar single-scatter model; the results show a perfect match. Numerical examples for various polarization setups are obtained, and results show that the single-scatter and multiple-scatter signals are all polarization dependent. Therefore, NLOS polarized UV communication with a high data rate is achievable--the polarizing information is coded by a time-dependent polarizer, influenced by the atmospheric channel, and decoded according to the distribution characteristics of the scattered signals after the time-independent analyzers.

9.
Opt Lett ; 36(14): 2614-7, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21765485

RESUMEN

A high-performance and compact fiber-to-waveguide binary blazed subwavelength grating coupler was designed based on silicon-on-insulator. By the appropriate choice of waveguide/grating parameters, including thicknesses, periods, height, and fill factor, to optimize the mode matching, a relatively high coupling efficiency was obtained for the fiber and waveguide interface. Moreover, perfectly vertical fiber coupling is achieved by using an asymmetric subgrating structure in which a period consists of two subgratings with identical etching height and different widths. Coupling efficiency as high as 69% at a wavelength of 1.52 µm and 65% at a wavelength of 1.55 µm is calculated. Simultaneously, the 1 dB wavelength bandwidth is around 80 nm. The coupling efficiency can reach up to 80% or so if Bragg reflector layers are added. Finally, the device layout is simple, feasible, one-step etched, and compatible with standard complementary metal-oxide semiconductor technology processing.

10.
J Opt Soc Am A Opt Image Sci Vis ; 26(11): 2466-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19884949

RESUMEN

A propagation model that describes the characteristics of multiscatter radiation in atmosphere is presented. The model is based on the Monte Carlo method; each scattering process is set as an event of probability. LOWTRAN7 is used to calculate the atmospheric coefficients, and Mie theory is used to calculate the scattering characteristics of the particles. It is shown that the multiscatter model matches the single-scatter model perfectly when the scattering count is 1, and the formula for the single-scatter approximation is modified for the non-line-of-sight (NLOS) problem. It is also shown that the duration of the impulse response is about 8 micros, the proportion of single-scatter irradiance is very small, and the average scattering count is 3.85 instead of 1 when the range is close to 1 km (weather conditions, field of view, and elevation angle are given). All these characteristics are presented for what is, to our knowledge, the first time. This model is wavelength-independent; 0.254 microm is chosen as the wavelength of simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA