Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Pollut ; 357: 124451, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942278

RESUMEN

As emerging organic contaminants, Polyhalogenated carbazoles (PHCZs) have caused wide concerns due to their wide distribution in the environment and dioxin-like toxicity. Nevertheless, research on the distribution and formation mechanisms of PHCZs in polluted environment of printing and dyeing plants is lacking. Here, 11 PHCZs were detected in samples from the Cao'e River, China, a typical river heavily polluted by printing and dyeing. The PHCZs concentrations in the soil, sediment, and water samples were 8.3-134.5 ng/g (median: 26.3 ng/g), 17.7-348.8 ng/g (median: 64.2 ng/g), and 1.2-41.4 µg/L (median: 4.8 µg/L), respectively. 3,6-dichlorocarbazole was the dominant congener, proved by both analysis results and formation mechanisms. PHCZ migration patterns in water-sediment systems indicated that highly halogenated PHCZs tend to be transferred to sediment. Furthermore, PHCZs are persistent, can undergo long-range transport, and pose high risks to aquatic organisms by models. PHCZs released from dye production into environment can be form through halogenation of carbazole or PHCZs formed during the dye synthesis, heating of halogenated indigo dyes, and photolysis of highly halogenated PHCZs. This is the first comprehensive study to reveal the impact of printing and dyeing plant activities on PHCZs in the environment.

2.
Environ Res ; 251(Pt 1): 118540, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401685

RESUMEN

The Yangtze River Delta (YRD), one of the most economically developed and industrialized regions in China, is confronted with challenges arising from rapid urbanization, particularly environmental pollution. The collection of surface water and sediment samples from forty-nine sites in the YRD was conducted to analyze 2378-substituted polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) congeners. The detected concentrations of PCDD/Fs were 0-5.3 pg TEQ/L in water and 0.12-1493 pg TEQ/g dw in sediment. The PCDD/Fs contamination in the sediment was widespread in the YRD. There were variations in the congener characteristics of PCDD/Fs in surface water and sediment. The proportion of OCDD was significantly lower in surface water samples compared to sediment, while the less chlorine-substituted homologs were found in larger proportions. To understand the partitioning and behavior of dioxins within the water-sediment system, we calculated the organic carbon normalized partition coefficients and fugacity fraction (ff) of PCDD/F congeners. The results revealed that the PCDD/Fs had not attained a state of distributional equilibrium, and the non-specific hydrophobic effect seemed minimally influential on their partitioning between sediment and water. The average ff values, which varied between 0.06 and 0.63, indicated differing migration directions for the PCDD/F congeners. Source identification analysis provided evidence that the dioxins in the river water were primarily attributed to industrial thermal processes. Iron and steel smelting, along with pesticide production and use, were likely responsible for the sediment contamination. This comprehensive analysis underscores the complex nature of PCDD/Fs pollution in the YRD and highlights the necessity for targeted environmental management strategies.


Asunto(s)
Dibenzofuranos Policlorados , Monitoreo del Ambiente , Sedimentos Geológicos , Dibenzodioxinas Policloradas , Ríos , Contaminantes Químicos del Agua , China , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Dibenzodioxinas Policloradas/análisis , Contaminantes Químicos del Agua/análisis , Dibenzofuranos Policlorados/análisis , Ríos/química , Benzofuranos/análisis
3.
Environ Sci Technol ; 57(45): 17522-17533, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37905521

RESUMEN

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and short-chain chlorinated paraffins (SCCPs) can be formed during the production of chlorinated paraffins (CPs). Detection and accurate quantification of PCDD/Fs in CPs are challenging because of their matrix complexity. Therefore, the occurrence and formation mechanisms of PCDD/Fs from CPs have not been studied extensively in the past. In this study, 15 commercial samples including solid and liquid CPs were collected in 2022 from China. The average ΣSCCP concentrations detected in the solid and liquid CPs were 158 and 137 mg/g, respectively. The average International Toxic Equivalent (I-TEQ) values of 2,3,7,8-PCDD/F in solid and liquid CPs were 15.8 pg I-TEQ/g and 15.0 pg I-TEQ/g, respectively. The solid and liquid CPs had different predominant congener groups for SCCPs and PCDD/Fs. Possible formation routes for the generation of PCDD/Fs were analyzed by screening precursors in paraffin and laboratory-scale thermochemical experiments of CPs. The transformation between 2,3,7,8-PCDD/Fs and non-2,3,7,8-PCDD/Fs was recognized by calculating the successive chlorination preference. The first reported occurrence of PCDD/Fs in CP commercial products indicated that exposure to CPs and downstream products might be an assignable source of PCDD/F emission, which is of great significance to further explore the control factors of PCDD/Fs in the whole life cycle of CPs.


Asunto(s)
Benzofuranos , Dioxinas , Dibenzodioxinas Policloradas , Parafina , Dibenzofuranos , Dibenzofuranos Policlorados/análisis , Benzofuranos/análisis , Aceite Mineral , China , Monitoreo del Ambiente
4.
Environ Pollut ; 327: 121576, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37028786

RESUMEN

ANALYSIS: of air conditioner (AC) filter dust can reveal the level of organophosphate ester (OPE) pollution in indoor environments, but comprehensive research on this topic remains lacking. This study combined non-targeted and targeted analysis to screen and analyze 101 samples of AC filter dust, settled dust, and air obtained in 6 indoor environments. Phosphorus-containing organic compounds account for a large proportion of the organic compounds found in indoor environments, and OPEs might be the main pollutants. Using toxicity data and traditional priority polycyclic aromatic hydrocarbons for toxicity prediction of OPEs, 11 OPEs were prioritized for further quantitative analysis. The concentration of OPEs in AC filter dust was highest, followed in descending order by that in settled dust and that in air. The concentration of OPEs in AC filter dust in the residence was two to seven times greater than that in the other indoor environments. More than 56% of the OPEs in AC filter dust showed significant correlation, while those in settled dust and air were weakly correlated, suggesting that large amounts of OPEs collected over long periods could have a common source. Fugacity results showed that OPEs were transferred easily from dust to air, and that dust was the main source of OPEs. The values of both the carcinogenic risk and the hazard index were lower than the corresponding theoretical risk thresholds, indicating low risk to residents through exposure to OPEs in indoor environments. However, it is necessary to remove AC filter dust in a timely manner to prevent it becoming a pollution sink of OPEs that could be rereleased and endanger human health. This study has important implications for comprehensive understanding of the distribution, toxicity, sources, and risks of OPEs in indoor environments.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Humanos , Monitoreo del Ambiente , Ésteres/análisis , Retardadores de Llama/análisis , Organofosfatos/análisis , Medición de Riesgo , Contaminación del Aire Interior/análisis , Polvo/análisis , China
5.
Oncogene ; 42(1): 62-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371565

RESUMEN

Argonaute proteins, which consist of AGO1, AGO2, AGO3 and AGO4, are key players in microRNA-mediated gene silencing. So far, few non-microRNA related biological roles of AGO4 have been reported. Here, we first found that AGO4 had low expression in non-small cell lung cancer (NSCLC) patient tumor tissues and could suppress NSCLC cell proliferation and metastasis. Subsequent studies on the mechanism showed that AGO4 could interact with the tripartite motif-containing protein 21 (TRIM21) and the glucose-regulated protein 78 (GRP78). AGO4 promoted ubiquitination of GRP78 by stabilizing TRIM21, a new specific ubiquitin E3 ligase for promoting K48-linked polyubiquitination of GRP78 confirmed in this paper, which resulted in induced cell apoptosis and inhibited autophagy by activating mTOR signal pathway. Further studies showed that p53 had dominant effects on TRIM21-GRP78 axis by directly increasing the expression of TRIM21 in p53 wild-type cells and AGO4 may alternatively regulate TRIM21-GRP78 axis in p53-deficient cells. We also found that overexpression of AGO4 results in suppression of multiple p53-deficient cell growth both in vivo and vitro. Together, we showed for the first time that the AGO4-TRIM21-GRP78 axis, as a new regulatory pathway, may be a novel potential therapeutic target for p53-deficient tumor treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Apoptosis/genética , Chaperón BiP del Retículo Endoplásmico , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
6.
Molecules ; 29(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202620

RESUMEN

Hexabromocyclododecane (HBCD) is the most important flame retardant that has been used in Expanded Polystyrene foam and Extruded Polystyrene foam in the past forty years across the world. China was the major producer and user of HBCD, and the total HBCD production was about 0.3 million tons. Although HBCD was completely banned in China in 2021 because of its long-range transport, bioaccumulation and toxicity, there is still a lot of residue in the environment. Therefore, we reviewed multiple studies concerning the distribution of HBCD in diverse environmental matrices, such as in the air, dust, soil, water, sediment, and biota. Results revealed that HBCD levels in different environments in China present geographical variation and were at a high level compared with other countries. In all environmental media, relatively high HBCD concentrations have been found in industrial and urban areas. Industrialization and urbanization are two important factors that influence the concentration and distribution of HBCD in the environment. In terms of isomer, γ-HBCD was the dominant isomer in soil, water, and sediment, while in the biota α-HBCD was the predominant isomer.

7.
iScience ; 25(12): 105710, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36578317

RESUMEN

Ethylene carbonate (EC) in the electrolyte is not stable in cells operated at high voltage (≥4.4V) or with Li metal anode, which greatly reduce the energy density and lifetime of the rechargeable lithium battery. Herein, an EC-free linear alkyl carbonate-based electrolyte is developed, which enables the high-voltage (≥4.4V) and low-temperature (-30°C) application of Ni-rich cathode (LiNi0.8Mn0.1Co0.1O2, NCM811). The EC-free system, consisting of LiPF6 and LiNO3 in ternary linear alkyl carbonates, possesses low viscosity, weakly solvated structure, and high interfacial stability with both the Ni-rich cathode and the Li metal anode to avoid continuous electrode/electrolyte side reactions and metal dissolution from the cathode. As a result, the Li||NCM811 cell delivers remarkable capacity retention of 93 ± 0.5% at the voltage of 4.4V and 88 ± 0.6% at 4.5V over 100 cycles. This study provides very encouraging perspective to develop EC-free carbonate-based electrolyte for high-voltage and low-temperature application in high-energy-density rechargeable lithium batteries.

8.
ACS Appl Mater Interfaces ; 14(40): 45433-45443, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36180972

RESUMEN

The compatibility of current collectors with reactive Li is key to inducing stable Li cycling and prolonged cycle life of lean Li-metal batteries. Herein, a thin and uniform layer of Ni-P complex was built on the surface of a Cu current collector (NiP@Cu) via an efficient, controllable, and cost-effective electroless plating method. The thickness, morphology, composition, and roughness of the Ni-P deposition were successfully regulated. Lithiophilicity of the current collector was greatly improved by Ni-P deposition, which effectively reduced the Li nucleation overpotential and suppressed the Li dendrite growth. In addition, NiP@Cu promoted an inorganic LiF/Li3P-rich solid electrolyte interphase to facilitate interfacial charge transfer and eliminate excessive side reactions between Li and the electrolyte. As a result, the Coulombic efficiency of half-cells remained above 98.5% for more than 400 cycles at 0.5 mA/cm2 and 98.2% for more than 250 cycles at 1 mA/cm2. Full cells with NiP@Cu also showed superior performance compared to those with bare Cu. This work proposes a promising surface modification method to develop a stable, dendrite-free, and cost-effective anode current collector for high-energy-density lean Li-metal batteries.

9.
Front Chem ; 10: 884308, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665062

RESUMEN

Lithium metal anodes have attracted extensive attention due to their high theoretical capacity and low redox potential. However, low Coulombic efficiency, serious parasitic reaction, large volume change, and dendrite growth during cycling have hindered their practical application. The engineering of an anode current collector provides important advances to solve these problems, eliminate excess lithium usage, and substantially increase the energy density. In this review, we summarize the engineering strategies of an anode current collector with emphasis on different methods and applications in lithium metal-based systems. Finally, the perspectives and challenges of current collector engineering for lithium metal anode are discussed.

10.
J Hazard Mater ; 435: 128992, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35489317

RESUMEN

Perylene diimide and its derivatives are promising photocatalysts for clean and efficient production, but their practical application in the field of photocatalysis is still limited by the rapid photogenerated charge recombination. In this work, the confined photocatalysts were synthesized by using a gas-phase self-assembly method and comparing the morphology and photocatalytic properties of different photocatalysts after the confinement of carbon nanotubes. The confinement effect of carbon nanotubes acts to stabilize perylene diimide. Electrostatic interaction formed by a wide range of dispersion forces is dominant in the process of stabilization. Benefitting from the three-dimensional electron transfer pathway formed by the conjugation of perylene diimide with a large number of π electrons to the carbon nanotubes plane, the confined photocatalyst shows the pseudo-first-order kinetic constant k of 1.106 h-1 for the photocatalytic degradation of diclofenac under light, which is 6.11 times higher than that of perylene diimide. The electron transfer created an internal electric field at the interface from carbon nanotubes to perylene diimide, which greatly accelerated the separation of photogenerated electron-hole pairs and improved the photocatalytic activity. This study further expands the applicability of perylene diimide in the field of photocatalysis and provides a new approach for water environment treatment.


Asunto(s)
Nanotubos de Carbono , Perileno , Purificación del Agua , Catálisis , Diclofenaco
11.
Chemosphere ; 287(Pt 3): 132265, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34537458

RESUMEN

Spatial trends, partitioning behavior, and potential sources of polychlorinated naphthalenes (PCNs) in water-sediment system from the Yangtze River Delta (YRD) were investigated in this study. The total concentrations of 75 PCNs in water and sediment samples were 0.022-0.310 ng/L and 0.01-1.59 ng/g dry weight, respectively. The homolog patterns in the sediment and water samples were somewhat different. Di-to tetra-CNs made larger contributions in the sediment, while the mono-to tri-CNs were dominant homologs in the water. Overall, the low-chlorinated naphthalenes (mono-to tetra-CNs) were found to be the dominant homologs in the YRD water and sediment samples, and the homolog group contributions to the total PCNs concentrations decreased as the number of chlorine atoms increased. CN-5/7 and CN-24/14 were found at high concentrations in both the water and sediment. Partitioning and transfer of PCNs between water and sediment were assessed by calculating the partition coefficients and fugacity fractions. The partition coefficients showed that PCNs were not in equilibrium status in the water-sediment system, and hydrophobicity played an important role in PCNs partitioning. The fugacity fractions indicated that mono- to tri-CNs had stronger tendencies to escape from the sediment into the water, while the high-chlorinated naphthalenes close to equilibrium. Principal component analysis and correlation analysis indicated that industrial thermal processes and the use and disposal of products containing PCNs industrial products are sources of PCNs in the YRD water-sediment system.


Asunto(s)
Monitoreo del Ambiente , Ríos , China , Naftalenos/análisis , Agua
12.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885731

RESUMEN

A gas chromatography-mass spectrometry (GC/MS) method for the determination of hexabromocyclododecane (HBCD) in expanded polystyrene and extruded polystyrene foam (EPS/XPS) was developed. The EPS/XPS samples were ultrasonically extracted with acetone and the extracts were purified by filtration through a microporous membrane (0.22 µm) and solid-phase extraction. The samples were analyzed using a GC/MS using the selected ion monitoring mode. The ions 157, 319 and 401 were selected as the qualitative ions, while ion 239 was chosen as the quantitative ion. An HBCD standard working solution with a concentration range of 1.0-50.0 mg/L showed good linearity. The detection limit of HBCD was 0.5 mg/kg, meeting the LPC limit (<100 or 1000 mg/kg). Six laboratories were selected to verify the accuracy of the method, and 10 samples were tested. The interlaboratory relative standard deviation range was 3.68-9.80%. This method could play an important role in controlling HBCD contamination in EPS/XPS.

13.
Molecules ; 26(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34641531

RESUMEN

The occurrences, distributions, and risks of 55 target volatile organic compounds (VOCs) in water, sediment, sludge, and soil samples taken from a chemical industrial park and the adjacent area were investigated in this study. The Σ55-VOCs concentrations in the water, sediment, sludge, and soil samples were 1.22-5449.21 µg L-1, ND-52.20 ng g-1, 21.53 ng g-1, and ND-11.58 ng g-1, respectively. The main products in this park are medicines, pesticides, and novel materials. As for the species of VOCs, aromatic hydrocarbons were the dominant VOCs in the soil samples, whereas halogenated aliphatic hydrocarbons were the dominant VOCs in the water samples. The VOCs concentrations in water samples collected at different locations varied by 1-3 orders of magnitude, and the average concentration in river water inside the park was obviously higher than that in river water outside the park. However, the risk quotients for most of the VOCs indicated a low risk to the relevant, sensitive aquatic organisms in the river water. The average VOCs concentration in soil from the park was slightly higher than that from the adjacent area. This result showed that the chemical industrial park had a limited impact on the surrounding soil, while the use of pesticides, incomplete combustion of coal and biomass, and automobile exhaust emissions are all potential sources of the VOCs in the environmental soil. The results of this study could be used to evaluate the effects of VOCs emitted from chemical production and transportation in the park on the surrounding environment.

14.
Molecules ; 26(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34500730

RESUMEN

The pollution status of polychlorinated naphthalenes (PCNs) in the sediment of the Yangtze River Basin, Asia's largest river basin, was estimated. The total concentrations of PCNs (mono- to octa-CNs) ranged from 0.103 to 1.631 ng/g. Mono-, di-, and tri-PCNs-consisting of CN-1, CN-5/7, and CN-24/14, respectively, as the main congeners-were the dominant homolog groups. Combustion indicators and principal component analysis showed that the emissions from halowax mixtures were the main contributor to PCNs in sediment, among most of the sampling sites. The mean total toxic equivalent (TEQ) was calculated to be 0.045 ± 0.077 pg TEQ/g, which indicates that the PCNs in sediments were of low toxicity to aquatic organisms. This work will expand the database on the distribution and characteristics of PCNs in the river sediment of China.

15.
J Hazard Mater ; 418: 126265, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102354

RESUMEN

The global status of dioxin emissions across 150 countries/regions were compiled in this study. China, the major emitter of dioxin and the largest developing country, was chosen as an example to illustrate its emission reductions. The global dioxin emissions were about 97.0 kg TEQ/year, Asia and Africa emitted the most dioxins among the continents. Globally, open burning processes were the most important sources of dioxins. Dioxin emissions in developed countries have remained at low and stable level, while those in developing countries have remained at relatively high level or have continued to increase in recent years. It can be speculated that the global dioxin emissions will increase first and then decrease in the future. Chinese dioxin emissions were stable around 9 kg toxic equivalent (TEQ) in recent years, while 17 subcategories are the key sources of dioxin control in the future. Moreover, according to analysis toward China's dioxin emission trend and sources, there is a large space for dioxins reduction in industries such as metal production, waste incineration and disposal. The results indicated that there is at least 30-70% of reduction scope in China based on three scenarios, and this will reduce the world's annual dioxin emissions by 2.7-6.8%.


Asunto(s)
Contaminantes Atmosféricos , Benzofuranos , Dioxinas , Dibenzodioxinas Policloradas , Contaminantes Atmosféricos/análisis , Dioxinas/análisis , Monitoreo del Ambiente , Incineración , Dibenzodioxinas Policloradas/análisis
16.
Environ Pollut ; 283: 117121, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33865098

RESUMEN

The Yangtze River Delta (YRD) is one of the fastest developing areas in eastern China and contains many chemical industry parks. The profiles and sources of polycyclic aromatic hydrocarbons (PAHs) in soil in chemical industry parks and surrounding areas in the YRD were investigated by analyzing soil samples (n = 64) were collected in the YRD and Rudong chemical park (RD), a typical chemical park in the Yangtze River Delta. The total concentrations of 19 PAHs in the YRD soil samples were 16.3-4694 ng g-1 (mean 688 ng g-1), and the total concentrations of PAHs in RD were 21.6-246 ng g-1 (mean 75.4 ng g-1). The PAHs in soil in YRD were dominated by four-ring and five-ring PAHs, and the PAHs in RD were dominated by two-ring and three-ring PAHs. It suggested that PAHs may have been supplied to soil in YRD predominantly through coal combustion and vehicle emissions, PAHs in the soil of RD may be due to the volatilization and leakage of chemical raw material. According to the different distribution characteristics of PAHs, the ratio (1.5) of (2 + 3) rings/4 rings was proposed to identify the chemical source of PAHs. The PAH isomer ratios and principal component analysis/multiple linear regression (PCA/MLRA) results indicated that PAHs concentrations in soil in the YRD and RD are mainly supplied by industrial and traffic emissions. Incremental lifetime cancer risks (ILCRs) indicated that PAHs in soil pose negligible cancer risks to children and adults, but much stronger risks to children than adults.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Adulto , Industria Química , Niño , China , Monitoreo del Ambiente , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Ríos , Suelo , Contaminantes del Suelo/análisis
17.
Sci Total Environ ; 782: 146828, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33839653

RESUMEN

Air pollution control devices (APCDs) have been fitted to many coal-fired power plants to decrease the impacts of pollutants generated during coal combustion. APCDs remove conventional pollutants but also decrease volatile organic compound (VOC) emissions. In this study, flue gas samples were collected from different points in seven typical coal-fired power and two industrial boilers, and the VOC concentrations in the flue gas samples were determined by gas chromatography-mass spectrometry (GC-MS). Selective catalytic reduction (SCR) systems and electrostatic precipitators (ESP) can synergistically remove VOCs, the mean removal rate of VOCs by ESP was 42% ± 9%. This was caused by the catalyst in SCR systems and the condensation process in the ESP. Wet flue gas desulfurization (WFGD) affected different VOCs in different ways, increasing the halogenated hydrocarbons and aromatic hydrocarbons concentrations but decreasing the oxygenated VOCs concentrations by 12%. Wet electrostatic precipitators (WESP) increased VOC emissions. By calculating Ozone formation potential (OFP), aromatic hydrocarbons are important contributors to ozone production. The emission factor of the power plant was 0.69 g/GJ, and the Chinese annual emission was about 1.2 × 104 t. VOCs emissions in different regions were affected by factors such as the economy and population. VOC emissions can be decreased by using the most appropriate unit load and improving the VOC removal efficiencies of the APCDs.

18.
Plants (Basel) ; 10(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445404

RESUMEN

WUSCHEL (WUS) protein regulates stem cell function in shoot apical meristem of Arabidopsis. The expression of WUS gene is strictly regulated by developmental cues and environmental factors. As DnaJ domain-containing proteins, SDJ1 and SDJ3 have been proven to play an important role in transcriptional activation of promoter methylated genes. Here, we showed that three DnaJ domain-containing proteins including SDJ1 and SDJ3 can bind WUS protein as a complex, which further maintain the expression of WUS gene by binding to WUS promoter. We propose a model how DnaJ domain-containing proteins are involved in the self-regulation of WUS gene in stem cells maintenance of Arabidopsis.

19.
Sci Total Environ ; 754: 142176, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916481

RESUMEN

The Yangtze River Delta (YRD) is one of the most populated and economically prosperous regions in China and contains numerous chemical industry parks. To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs), surface water and sediment samples were collected from areas around the industrial parks. The total concentrations of 19 PAHs in water and sediment were 32.98-286 ng L-1 and 15.14-5355 ng g-1, respectively. The highest PAH concentrations in water and sediment were found in samples from Wuxi city, which were dominated by high molecular weight (HMW) PAHs, and strongly influenced by fine chemical parks. HMW compounds dominated in the sediment with PAHs containing four and five rings accounting for 61% of the sedimentary ΣPAHs, PAHs in water were dominated by low molecular weight (LMW) compounds (PAHs with two and three rings represented >68% of ΣPAHs). The results of isomeric ratio analysis and principal component analysis with multiple linear regression indicated that the PAH concentrations in water and sediment near the YRD chemical parks are strongly influenced by industrial emissions. The fugacity fraction approach was applied to explain the trend for water-sediment exchange of 16 priority PAHs, which showed that net fluxes for most were from the sediment into water. The results indicated that the LMW PAHs were in a non-steady state in the sediment-water system. An ecological risk assessment showed that most sites were low to medium risk, but one site was high risk.

20.
Sci Total Environ ; 756: 144063, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33288269

RESUMEN

Coal-fired power plants are important sources of polycyclic aromatic hydrocarbon (PAH) emissions in the world. The effects of various air pollution control devices (APCDs) on PAH emissions were investigated by analyzing samples from inlets and outlets of APCDs in six coal-fired power plants (A-F) and two coal-fired industrial boilers (G and H). The APCDs were electrostatic precipitators (ESPs), wet flue gas desulfurization systems (WFGDs), and wet ESPs (WESPs). The PAH congener patterns for the coal-fired plants were similar. Gas-phase PAHs were dominant in flue gases, and the most abundant PAH was naphthalene. Three- and four-ring PAHs were dominant in fly ash. Positive correlations were found between the PAH and total organic carbon contents of fly ash (R2 0.87) and slag (R2 0.92). Plants D-F, equipped with low-low-temperature ESPs (LLT-ESPs) and WESPs discharged the lowest PAHs. Circulating water was an important source of PAHs in the desulfurization except in plant A, which used desalinated seawater rather than circulating water in the desulfurization process. WESPs decreased PAH concentrations by an average of 20.67%, which can be spread to other plants to reduce PAHs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA