RESUMEN
Introduction: Anxiety disorders continue to prevail as the most prevalent cluster of mental disorders following the COVID-19 pandemic, exhibiting substantial detrimental effects on individuals' overall well-being and functioning. Even after a search spanning over a decade for novel anxiolytic compounds, none have been approved, resulting in the current anxiolytic medications being effective only for a specific subset of patients. Consequently, researchers are investigating everyday nutrients as potential alternatives to conventional medicines. Our prior study analyzed the antianxiety and memory-enhancing properties of the combination of Walnut Peptide (WP) and Casein Peptide (CP) in zebrafish. Methods and Results: Based on this work, our current research further validates their effects in mice models exhibiting elevated anxiety levels through a combination of gavage oral administration. Our results demonstrated that at 170 + 300 mg human dose, the WP + CP combination significantly improved performances in relevant behavioral assessments related to anxiety and memory. Furthermore, our analysis revealed that the combination restores neurotransmitter dysfunction observed while monitoring Serotonin, gamma-aminobutyric acid (GABA), dopamine (DA), and acetylcholine (ACh) levels. This supplementation also elevated the expression of brain-derived neurotrophic factor mRNA, indicating protective effects against the neurological stresses of anxiety. Additionally, there were strong correlations among behavioral indicators, BDNF (brain-derived neurotrophic factor), and numerous neurotransmitters. Conclusion: Hence, our findings propose that the WP + CP combination holds promise as a treatment for anxiety disorder. Besides, supplementary applications are feasible when produced as powdered dietary supplements or added to common foods like powder, yogurt, or milk.
RESUMEN
Objectives: Obesity is often associated with glucolipid and/or energy metabolism disorders. Ascophyllum nodosum extract (seaweed extract, SE) and Camellia sinensis-leaf extract (tea extract, TE) have been reported to promote positive metabolic effects through different mechanisms. We investigated the effects of SE and TE on metabolic homeostasis in diet-induced obese mice and discussed their functional characteristics. Methods: Male C57BL/6J mice fed with high-fat diets for 8 weeks were established as obese models and subsequently divided into different intervention groups, followed by SE, TE, and their joint interventions for 10 weeks. Body weight and food intake were monitored. Fasting glucose and oral glucose tolerance tests were interspersed during the experiment. After the intervention, the effects on obesity control were assessed based on body composition, liver pathology section, blood lipids and glucose, respiratory exchange ratio (RER), energy expenditure (EE1, EE2, and EE3), inflammatory factors, lipid anabolism enzymes, and gut flora of the obese mice. Results: After continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower ~4.93 g, vs. HFD 38.02 g), peri-testicular fat masses (lower ~0.61 g, vs. HFD 1.92 g), and perirenal fat masses (lower ~0.21 g, vs. HFD mice 0.70 g). All interventions prevented diet-induced increases in plasma levels of glucose, adiponectin, leptin, and the inflammatory factors IL-1ß and TNF-α. The RER was modified by the interventions, while the rhythm of the RER was not. Blood lipids (total cholesterol, triglycerides, and LDL) decreased and were associated with lower lipid anabolism enzymes. In addition, the SE and TE interventions altered the structure and abundance of specific flora. Different interventions inhibited the growth of different genera positively associated with obesity (Escherichia-Shigella, Helicobacter, etc.) and promoted the growth of Akkermansia and Bacteroides, thus affecting the chronic inflammatory state. Conclusion: SE and TE both have synergistic effects on weight control and glucolipid metabolism regulation by improving insulin sensitivity and reducing lipid synthesis-related enzyme expression, whereas the combination of SE and TE (3:1) has a better effect on regulating energy metabolism and inhibiting chronic inflammation.
RESUMEN
Herein, we explored the effects of Poria cocos extract, protein powder mixture, and their combined intervention on weight loss in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice were selected and fed a HFD for 8 weeks; obese mice that were successfully modeled were divided into modeling and five intervention groups, and given the corresponding treatment for 10 weeks. Body weight, fat, and muscle tissue, blood glucose, lipids, inflammatory factors, and other glucose and lipid metabolism-related indicators were measured to evaluate the effect of P. cocos and protein powder intervention on weight loss in obese mice. The body weight of the intervention group was reduced compared with the HFD group. Fat content of mice in F3PM group decreased significantly (p < .05). Levels of blood glucose, lipids, adiponectin, leptin, and inflammatory factors, including interleukin-1 ß and tumor necrosis factor- α showed improvement. Lipoprotein lipase (lower about 2.97 pg/ml, vs. HFD mice 10.65 mmoL/ml) and sterol regulatory element-binding transcription factor (lower about 1413.63 pg/ml, vs. HFD mice 3915.33 pg/ml) levels in liver tissue were decreased. The respiratory exchange rate (RER) of mice in the HFD and subject intervention groups had no circadian rhythm and was maintained at approximately 0.80. The protein powder mixture (PM) group had the lowest RER (p < .05), the P. cocos extract (FL) and F1PM groups had similar RER to the HFD group (p < .05), and the F2PM group had a higher RER than the HFD group (p < .05). And food intake and energy metabolism returned to circadian rhythm, with an increase in the dose of P. cocos extract, the feeding rhythms of F1PM, F2PM, and F3PM were closer to that of the normal diet (ND) group. Feeding intervention with P. cocos and protein powder improved fat distribution, glucolipid metabolism, and energy metabolism, with the combination of F3PM showing more diverse benefits.
RESUMEN
Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism through different modes of action. We tested the effects of CSE, Lactobacillus paracasei K56, and their combination to determine whether they have synergistic effects on glycolipid metabolism of obese mice. We fed male C57BL/6J mice with high-fat diet for 8 weeks to establish an obesity model. The obesity mice were selected and divided into five groups: the model control group and four intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31-4.41 g, vs. HFD 42.25 g, p < 0.01), and epididymal (lower about 0.58-0.92 g, vs. HFD 2.50 g, p < 0.01) and perirenal fat content (lower about 0.24-0.42 g, vs. HFD 0.88 g, p < 0.05); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. K56 + CSE-combined intervention groups were more effective in lowering blood glucose, IL-1ß, and TNF-α levels than the CSE and K56 alone interventions. The content of fatty acid synthase and SREBP-1c protein in liver tissue was lower. The combination has synergistic effects on weight control, fat reduction, and blood glucose regulation by improving the chronic inflammatory state and reducing the content of lipid synthesis-related enzymes of obese mice, which can hinder chronic disease progression. PRACTICAL APPLICATION: Coix seed extract can be used in obese people to regulate abnormal glucose and lipid metabolism and delay the development of chronic diseases.
Asunto(s)
Coix , Lacticaseibacillus paracasei , Ratones , Masculino , Animales , Ratones Obesos , Glucemia/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , GlucolípidosRESUMEN
Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism via different modes of action. We tested the effects of CSE, Bifidobacterium BPL1, and their combination to determine their effects on glycolipid metabolism in obese mice. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to establish an obesity model. Obese mice were selected and divided into four groups: the model control group and three intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31 g, vs. HFD mice 42.23 g) and epididymal (lower about 0.37 g, vs. HFD mice 2.5 g) and perirenal fat content (lower about 0.47 g, vs. HFD mice 0.884 g); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. CSE, BPL1 and their combination can effectively control the weight gain in obese mice, reduce fat content, and regulate blood lipids and abnormal blood sugar. These results may be related to reduce the chronic inflammatory states, improve energy metabolism, exercise, relieve insulin sensitivity, and reduce lipid synthesis via the intervention of CSE, BPL1 and their combination. Compared with the single use of CSE alone, the combination of CSE + BPL1 can better exert the regulation function of intestinal flora, and change in the abundance of bacteria that could improve the level of inflammatory factors, such as increasing Bifidobacterium, reducing Lactococcus. Compared with the use of BPL1 alone, the combination of CSE and BPL1 can better regulate pancreatic islet and improve blood sugar. CSE may act directly on body tissues to exert anti-inflammatory effects. BPL1 and CSE + BPL1 may improve the structure and function of the intestinal flora, and reduce tissue inflammation.
RESUMEN
Anxiety disorders are the most common mental disorders and, without proper treatment, may lead to severe conditions: e.g., somatic disorders or permanent damage to central nervous system. Although there are drugs in clinical trials, this study focuses on exploring the efficacy of nutrients in treating these diseases. We built different zebrafish models and screened several nutrient combinations for their antianxiety, antioxidant, neuro-protecting, and memory-improving activities. Our results showed that the combinations of nutrients (e.g., Walnut Peptides + Theanine at 14.2 + 33.3 µg/ml) have similar or better activities than the positive control drugs. In addition, we discovered that the effects of the nutrients in the above four aspects were universal and highly related. This study is noteworthy as it suggested that nutrients could be healthier and greener drug alternatives and provide similar or better universal treatments for anxiety and related conditions.
RESUMEN
BACKGROUND: γ-aminobutyric acid (GABA) is a naturally occurring non-protein amino acid in the nervous system and has a wide range of physiological functions in the body. Walnut peptide (WP) contains high levels of arginine, aspartic acid, and glutamate, and has been shown to improve cognitive deficits and memory impairment in mice, while restoring antioxidant enzyme levels and reducing brain inflammatory mediators. METHODS: This study investigated the effects of GABA and WP, either alone or in combination, on sleep disturbances in mice. The pentobarbital-prolonged sleep test, pentobarbital-threshold sleep test, and barbital-induced sleep test were conducted to assess the effects of GABA and WP on sleep quality by gavage for 30 days as follows: GABA (102.25 mg/kg), WP (102.25 mg/kg), GABA (33.95, 102.25, 306.75 mg/kg)/WP (102.25 mg/kg) mixture. Furthermore, neurotransmitter tests were performed using mice brain tissue to investigate the possible mechanisms of GABA and WP on sleep status. RESULTS: The results showed that the combined use of GABA and WP significantly increased sleep duration compared with single administration of either WP or GABA. Increasing doses of GABA in mice treated with combined GABA and WP elevated the sleep rate to 50.00%, 64.28%, and 64.28%, respectively, compared to mice treated with GABA alone (35.71%) or mice treated with WP alone (28.57%). In mice that received a combination of GABA and WP orally, the latency time was significantly decreased after 30 days compared to control mice (P<0.05). Additionally, in mice treated with GABA, WP, or the combination of GABA and WP, the concentrations of GABA and acetylcholine (Ach) in the brain were significantly elevated and the concentration of serotonin (5-HT) was decreased compared to untreated mice. CONCLUSIONS: These results demonstrated that the combined administration of GABA and WP could prolong the sleep duration, increase sleep rate, and shorten the sleep latency more effectively than the administration of either GABA or WP alone. The mechanisms of action may be related to the regulation of neurotransmitters in the brain tissue by the combination of GABA and WP.
Asunto(s)
Juglans , Animales , Ratones , Pentobarbital , Péptidos , Sueño , Ácido gamma-AminobutíricoRESUMEN
BACKGROUND: L-theanine (L-THE), a natural amino acid found in green tea, has been shown to improve anxiety and sleep. Neumentix proprietary spearmint extract (PSE), which is commonly found in beverage flavoring a pharmaceutical, also has a wide range of health benefits, including cognitive performance improvement. METHODS: Four experiments tested the effects of L-THE and PSE on sleep: a direct sleeping test, pentobarbital-induced sleeping test, sub-hypnotic pentobarbital-induced sleeping test, and sodium barbital-induced sleeping test. Presence of neurotransmitters in brain tissue was detected by liquid chromatography mass spectroscopy (HP LC-MS) during these studies. RESULTS: Pentobarbital-induced sleeping and sodium barbital-induced sleeping tests examined the potential effect of L-THE/PSE mixture on synergistic sleep, while neurotransmitter levels in the brain were determined by the high performance liquid chromatography/mass spectroscopy (HPLC/MS) method. L-THE and L-THE/PSE mixture showed increased sleep duration and shortened sleep latency when co-administrated with pentobarbital or sodium barbital. The mixture also increased sleeping rate when co-administrated with the pentobarbital at sub-hypnotic dose. Additionally, the L-THE, PSE and L-THE/PSE mixture significantly increased the concentrations of acetylcholine (Ach), γ-aminobutyric acid (GABA), and decreased the concentration of serotonin (5-HT) in the brain. CONCLUSIONS: These data demonstrated that L-THE/PSE mixture regulates sleep disorders via the GABA receptor and neurotransmitter systems.
Asunto(s)
Neurotransmisores , Ácido gamma-Aminobutírico , Animales , Encéfalo , Glutamatos , Ratones , SueñoRESUMEN
INTRODUCTION: Estrogen plays essential roles in the regulation of food intake, adiposity, and body weight control. The estrogen alpha receptor, encoded by estrogen receptor 1 gene (ESR1), has been implicated with anorexia nervosa (AN). A previous study indicated that the rs2295193 polymorphism in ESR1 may confer a genetic susceptibility to AN. METHODS: In a case-control study, we assessed 195 AN probands and 93 healthy controls; 99 trios were studied in a family-based association analysis through genotyping the rs2295193 polymorphism in ESR1. Additionally, we carried out a meta-analysis of the combined sample groups. RESULTS: There were no significant differences in the genotype or allele frequencies of the rs2295193 polymorphism between the AN and control groups (Ps > 0.05). In the transmission disequilibrium test (TDT) analyses, there was no evidence for biased transmission of the G allele of rs2295193 polymorphism (P = 0.32). In female-only samples, no significant association was observed between the rs2295193 polymorphism and AN in either case-control or transmission disequilibrium test analyses (Ps > 0.05). The meta-analysis revealed that no excess of transmission of the G allele in AN families (pooled odds ratio = 1.10, P = 0.79). DISCUSSION: Meta-analytically combined evidence from the present genotyping and the literature showed that rs2295193 polymorphism in ESR1 is not a major genetic susceptibility factor in AN.
Asunto(s)
Anorexia Nerviosa/genética , Receptor alfa de Estrógeno/genética , Predisposición Genética a la Enfermedad/genética , Adolescente , Alelos , Pueblo Asiatico/genética , Estudios de Casos y Controles , Estrógenos/fisiología , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Técnicas de Genotipaje , Humanos , Masculino , Oportunidad Relativa , Polimorfismo Genético/genética , Adulto JovenRESUMEN
BACKGROUND: The bi-relationships between psychological stress, negative affect and disordered eating has been well studied in western culture, while tri-relationship among them, i.e. how some of those factors influence these bi-relationships, has rarely been studied. However, there has been little related study in the different Chinese culture. This study was conducted to investigate the bi-relationships and tri-relationship between psychological stress, negative affect, and disordered eating attitudes and behaviors in young Chinese women. METHODOLOGY: A total of 245 young Chinese policewomen employed to carry out health and safety checks at the 2010 Shanghai World Expo were recruited in this study. The Chinese version of the Perceived Stress Scale (PSS-10), Beck Depression Inventory Revised (BDI-II), Beck Anxiety Inventory (BAI), and Eating Attitude Test (EAT-26) were administered to all participants. PRINCIPAL FINDINGS: The total scores of PSS-10, BDI-II and BAI were all highly correlated with that of EAT-26. The PSS-10 score significantly correlated with both BDI-II and BAI scores. There was no statistically significant direct effect from perceived stress to disordered eating (-0.012, 95%CI: -.038~0.006, p=0.357), however, the indirect effects from PSS-10 via affect factors were statistically significant, e.g. the estimated mediation effects from PSS to EAT-26 via depression and anxiety were 0.036 (95%CI: 0.022~0.044, p<0.001) and 0.015 (95%CI: 0.005~0.023, p<0.01), respectively. CONCLUSIONS: Perceived stress and negative affects of depression and anxiety were demonstrated to be strongly associated with disordered eating. Negative affect mediated the relationship between perceived stress and disordered eating. The findings suggest that effective interventions and preventative programmes for disordered eating should pay more attention to depression and anxiety among the young Chinese female population.
Asunto(s)
Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Escalas de Valoración Psiquiátrica , Estrés Psicológico/psicología , Encuestas y Cuestionarios , Adolescente , Adulto , Ansiedad/psicología , Pueblo Asiatico , China , Depresión/psicología , Trastornos de Alimentación y de la Ingestión de Alimentos/etnología , Femenino , Humanos , Modelos Psicológicos , Policia , Análisis de Regresión , Adulto JovenRESUMEN
BACKGROUND: The 10-item Perceived Stress Scale (PSS-10) is one of most widely used instruments to measure a global level of perceived stress in a range of clinical and research settings. This study was conducted to examine the psychometric properties of the Simplified Chinese version of the PSS-10 in policewomen. METHODOLOGY: A total of 240 policewomen were recruited in this study. The Simplified Chinese versions of the PSS-10, the Beck Depression Inventory Revised (BDI-II), and the Beck Anxiety Inventory (BAI) were administered to all participants, and 36 of the participants were re-tested two weeks after the initial testing. PRINCIPAL FINDINGS: The overall Cronbach's alpha was 0.86, and the test-retest reliability coefficient was 0.68. Exploratory Factor Analysis (EFA) yielded 2 factors with eigenvalues of 4.76 and 1.48, accounting for 62.41% of variance. Factor 1 consisted of 6 items representing "negative feelings"; whereas Factor 2 consisted of 4 items representing "positive feelings". The item loadings ranged from 0.72 to 0.83. The Confirmatory factor analysis (CFA) indicated a very good fit of this two-factor model to this sample. The PSS-10 significantly correlated with both BDI-II and BAI, indicating an acceptable concurrent validity. CONCLUSIONS: The Simplified Chinese version of the PSS-10 demonstrated adequate psychometric properties for evaluating stress levels. The results support its use among the Chinese population.
Asunto(s)
Estrés Psicológico/diagnóstico , Adolescente , Adulto , China , Depresión/diagnóstico , Análisis Factorial , Femenino , Humanos , Lenguaje , Aplicación de la Ley , Salud Laboral , Inventario de Personalidad , Psicometría/métodos , Reproducibilidad de los ResultadosRESUMEN
8-Chloro-cAMP and 8-chloro-adenosine (8-Cl-Ado) are known to inhibit proliferation of cancer cells by converting 8-Cl-Ado into an ATP analog, 8-chloro-ATP (8-Cl-ATP). Because type II topoisomerases (Topo II) are ATP-dependent, we infer that 8-Cl-Ado exposure might interfere with Topo II activities and DNA metabolism in cells. We found that 8-Cl-Ado exposure inhibited Topo II-catalytic activities in K562 cells, as revealed by decreased relaxation of the supercoiled pUC19 DNA and inhibited decatenation of the kinetoplast DNA (kDNA). In vitro assays showed that 8-Cl-ATP, but not 8-Cl-Ado, could directly inhibit Topo IIalpha-catalyzed relaxation and decatenation of substrate DNA. Furthermore, 8-Cl-ATP inhibited Topo II-catalyzed ATP hydrolysis and increased salt-stabilized closed clamp. In addition, 8-Cl-Ado exposure decreased bromo-deoxyuridine (BrdU) incorporation into DNA and led to enhanced DNA double-stranded breaks (DSBs) and to increased formation of gamma-H2AX nuclear foci in exposed K562 cells. Together, 8-Cl-Ado/8-Cl-ATP can inhibit Topo II activities in cells, thereby inhibiting DNA synthesis and inducing DNA DSBs, which may contribute to 8-Cl-Ado-inhibited proliferation of cancers.
Asunto(s)
2-Cloroadenosina/análogos & derivados , Daño del ADN , Leucemia Mieloide/patología , Inhibidores de Topoisomerasa II , 2-Cloroadenosina/farmacología , Adenosina Trifosfato/metabolismo , Biocatálisis , Humanos , Hidrólisis , Células K562RESUMEN
8-Chloro-cAMP (8-Cl-cAMP) and its metabolite 8-chloro-adenosine (8-Cl-Ado) inhibit cell growth by 8-Cl-Ado-converted 8-Cl-ATP that targets cell-cycle control and RNA metabolism. However, the cell-cycle checkpoint pathways remain to be identified. Recent studies have shown that 8-Cl-cAMP administration and 8-Cl-Ado exposure may damage chromosomal DNA in vivo and in vitro. In this study, we demonstrate that 8-Cl-Ado-induced DNA damage activates G2/M phase checkpoint, which is associated with ATM-activated CHK1-CDC25C-CDC2 pathway joined by BRCA1-CHK1 branch in apoptosis-resistant human myelocytic leukemia K562 (p53-null) cells. Inhibition of CHK1 kinase by Gö6976, an inhibitor of CHK1 activity, can promote DNA damage and lead to the activation of CHK2, converting G2/M checkpoint into intra-S-phase checkpoint in which two parallel branches, the ATM-CHK2-CDC25A-CDK2 and the ATM-NBS1/SMC1 cascades, are involved. These observations may provide aid in better understanding of the mechanisms of 8-Cl-cAMP and 8-Cl-Ado actions and in potential design of the combined therapy.