Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(15): 6767-6775, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569160

RESUMEN

Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a Mo2O4 structural unit and a Cu(I) alkynyl cluster into a structured framework. The resulting bimetallic cluster, Mo2Cu17, encapsulates a distinctive structure [Mo2O4Cu17(TC4A)4(PhC≡C)6], comprising a binuclear Mo2O4 subunit and a {Cu17(TC4A)2(PhC≡C)6} cluster, both shielded by thiacalix[4]arene (TC4A) and phenylacetylene (PhC≡CH). Expanding our exploration, we synthesized two homoleptic CuI alkynyl clusters coprotected by the TC4A and PhC≡C- ligands: Cu13 and Cu22. Remarkably, Mo2Cu17 demonstrates superior HER efficiency compared to its counterparts, achieving a current density of 10 mA cm-2 in alkaline solution with an overpotential as low as 120 mV, significantly outperforming Cu13 (178 mV) and Cu22 (214 mV) nanoclusters. DFT calculations illuminate the catalytic mechanism and indicate that the intrinsically higher activity of Mo2Cu17 may be attributed to the synergistic Mo2O4-Cu(I) coupling.

2.
Chem Asian J ; 10(11): 2361-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26183323

RESUMEN

A series of new long afterglow phosphors Ca2 SnO4:xTm(3+) were synthesized by using traditional solid-state reactions. XRD measurements and Rietveld refinement revealed that the incorporation of the Tm(3+) dopants generated no second phase other than the original one of Ca2 SnO4, which indicated that the dopants completely merged into the host. The corresponding optical properties were further systematically studied by photoluminescence, phosphorescence, and thermoluminescence (TL) spectroscopy. The results show that the Tm(3+)-related defects account for the bright bluish green afterglow emission from the characteristic f-f transitions of Tm(3+) ions. The bluish green long-lasting phosphorescence could be observed for 5 h by the naked eye in a dark environment after the end of UV irradiation. Two TL peaks at 325 and 349 K from the TL curves were adopted to calculate the depth of the traps, which were 0.45 and 0.78 eV, respectively. The mechanism of the long afterglow emission was also explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA